
The push model, on the other hand, has the client receive

updates in an asynchronous manner at the server's discretion,

generally after expressing interest in a certain type of

information (subscription phase). In other words, the client

becomes a passive part of the system, receiving updated

information as soon as it is available on the server, without

having to ask for it every so often. In this sense, e-mail could be

considered the oldest and most widespread form of push

technology on the Internet.

Effective Push Technology

Early Push Technology did not prove to be the ideal solution for

delivering live FX market data to a client through the Internet.

The main three issues (that are now completely solved by the

most mature and robust solutions) are:

• An inadequate control over used bandwidth and network

congestion. Pushing real-time data can lead to unpredictable

network traffic. This is because each user could subscribe to

an arbitrary number of currency pairs and order monitors

where the actual update frequency of each subscribed item is

changeable. The solution to this is to use dynamic heuristic

filtering algorithms to limit the bandwidth while keeping the

overall data coherency. Furthermore some adaptive

mechanisms can be employed to throttle the data flow based

on the state of the network.

• Poor scalability on the server side. True push solutions need to

maintain at least one open TCP socket for each connected

client. Some Web/application servers have been extended to

act as streaming engines, but their traditional architecture

based on the “one-thread-per-connection” model makes

scalability pretty impossible for tens of thousands of users.

The new-generation streaming engines employ more suitable

architectures. For example Lightstreamer, a comprehensive

Web push solution, adopts a staged event-driven architecture

instead of a thread-based one, making it possible to decouple

the number of connections that the server can sustain from the

number of threads that are employed.

• The necessity to download some external components onto

the client PC (such as an application, an applet, a browser

plug-in, etc.). This can now be substituted by a fully functional

“zero-client install” solution, made feasible by combining

several advanced Web techniques to create a paradigm that

has existed for many years and has been recently named

“Comet”.

This last issue involves the perception of the final user more than

the others, because a Web user is not accustomed to see live data

on a common Web page displayed by a standard browser. To

achieve such a goal, four paradigms were established.

Figure 1 summarizes the alternative names by which the

different paradigms are referred to. Figure 2 illustrates the

interaction models related to the paradigms. In both the figures

three tiers are used to explain the differences (user, browser,

server), because the type of interaction that occurs between the

server and the browser (i.e. the JavaScript engine) can be

different from the interaction between the browser and its human

user. In particular, a synchronous data delivery with respect to the

user’s actions means that to update the displayed data the user

must take some action or that the user’s actions are blocked

during the update. A synchronous data delivery with respect to

the browser’s actions means that even if a user’s action is not

required, under the hood, the JavaScript code running inside the

browser has to issue a request to the server and wait for a

response for each update.

110 october 2006 e-FOREX

Next generation Push:
a viable technology for web-
based FX market data delivery
Currently, one of the most utilized buzzwords regarding
Internet technology is “Web 2.0”, often associated with
other new terms such as “Ajax” and “Comet”. The goal
of this article is to show how the maturity of these
technologies finally permits the push of live FX market
data via the Internet to any browser with low latency and
high reliability.

Alessandro Alinone is CTO at Lightstreamer

Managing FX market data - applying next generation technology

The Web is changing under the pressure of its own success.

In recent years more and more applications have been

ported to a Web front-end, i.e. a “thin client” that runs entirely

within a browser window without installing any external

components. Until now the users have had to put up with poorer

user interfaces, with respect to the ones offered by traditional

desktop applications. The advent of Web 2.0, and Ajax in

particular, is transforming the Web user’s experience to make it

very similar to a desktop application (i.e. interactive controls, fast

response time, decoupling between user’s actions and page

loading, etc.). But this is still not enough for very sophisticated

real-time applications, such as FX market data delivery.

To guarantee a very low latency between the generation of a

price by the market and its presentation to the final user, a

dedicated solution is necessary, namely “Push Technology”.

This term was coined in 1996 to refer to any technique

addressed - to a greater or lesser degree and more or less

effectively - to reverse the classic Web model.

The classic model (known as “pull”) has the client (browser)

solicit data from the server in a synchronous manner. This

means that every time the client needs a data update, it has to

ask the server expressly to find out if the data has changed and

obtain the new value.

>>>

Figure 1. The different paradigms available to deliver
real-time data through the Web

Figure 2. The four models used to implement a real-time Web

october 2006 e-FOREX 111

112 october 2006 e-FOREX

Traditional Web applications are based on page refreshes

(automatic or user-driven reload action), in the course of which

both the user and the browser are “blocked”. In other words,

the system is completely synchronous. Furthermore the update

frequency that can be reached is very low.

Ajax applications have been introduced in order to avoid

blocking the user’s actions while retrieving data from the

server. But in the classic Ajax model, based on periodic polling,

the interaction between the browser and the server is still

synchronous, resulting in a waste of bandwidth and in high

latency for the data delivery.

To improve classic Ajax applications, the “asynchronous

polling” technique has been introduced. In this case the polling

period is not predefined, as in the two previous models, but is

controlled by the server. If no fresh data is available, the server

keeps the client request pending until new data is available. In

this way a near real-time behavior is achieved, especially for

low frequency events (higher frequency events still experiment

a possible delay caused by a full request/response round trip

that each update must undergo). Even when a true streaming

model is implemented, the asynchronous polling technique

should be kept as a backup for situations where some atypical

proxy server blocks all the streaming traffic (but the switch

between the two modes should be automatic, through some

“stream-sense” feature).

Currently, the state-of-the-art paradigm is known as “streaming

Ajax” or “Comet - forever frame”, where true push/streaming

is made possible on a very standard Web infrastructure. In this

model the data delivery is fully asynchronous, both from the

server to the browser and from the browser to the user’s

interface. This results in a very high update frequency, with low

latency and low bandwidth, leading to an actual real-time

system. This paradigm is implemented through a permanent

connection from the browser to the server, on the top of which

the server is able to deliver asynchronous messages adopting

a publish/subscribe mechanism. When the browser receives an

update through a JavaScript callback function, some code is

executed to update the DOM (document object model) of the

page in real time, in order to reflect the data change. Often

some graphical effects are employed to catch the user’s

attention on the changing value. Some advanced frameworks

make it even possible to plot a live streaming chart in the

browser window by using only pure HTML and JavaScript.

Conclusion

There is no doubt that pushing live FX market data via the

Internet can benefit all FX market participants (i.e. both sell-

side and buy-side). Specific real-time dashboards for both the

trading and sales roles can be developed, requiring on the

client side nothing more than a very common Web browser

and an Internet connection (not necessarily broadband). The

result is an improvement in information pervasiveness and a

simplification in the client-side system administration.

Managing FX market data - applying next generation technology

AD

