
Adapter Remoting Infrastructure
Network Protocol Specification

ARI Protocol version: 1.9.1
Target: Lightstreamer Server v. 7.3 or greater

Last updated: 14/2/2023

Table of contents

1 THE ARI PROTOCOL...3
1.1 Architecture...3
1.2 Protocol Basics...3
1.3 Packet Structure...4
1.4 Data Types and Encodings..5
1.5 Metadata Provider Protocol Packets...8
1.6 Data Provider Protocol Packets..24
1.7 Common Packets..29
1.8 Notes on Protocol Method Sequence..31

- 2 -

1 The ARI Protocol

1.1 Architecture

For an overview of the architecture of the Adapter Remoting Infrastructure and the necessary server
configurations, please refer to the “Adapter Remoting Infrastructure.pdf” file, available in the Light-
streamer distribution under the “docs” folder (or the “adapter_remoting_infrastructure” folder for
Server version earlier than 7.2).

The ARI protocol actually consists in two protocols, that apply to two different communications:

• between a Proxy Metadata Adapter and a Remote Metadata Adapter (the Metadata
Provider Protocol);

• between a Proxy Data Adapter and a Remote Data Adapter (the Data Provider Protocol).

The two protocols share the same syntax and rules (hence, we refer generically to a single ARI proto-
col) but differ in the types of packets to be exchanged.

1.2 Protocol Basics

The following are the basic principles of the ARI protocol:
• There are two unidirectional channels, named requests and replies; the requests channel

hosts protocol packets sent from a Proxy Adapter; the replies channel hosts protocol packets
sent from the counterpart (i.e.: the Remote Adapter).

• Protocol packets belong to various categories: request and corresponding reply packets; no-
tification packets, which are originated by a previous request; and keepalive packets.

• There are various types of request packets, each with a corresponding reply type, and of noti-
fication packets. There are also a few special cases of request types with no corresponding
reply type and vice-versa.

• In general, requests pertain to the requests channel, whereas replies and notifications pertain
to the replies channel. However, there are also a few backward requests, that can be issued
by the Remote Adapter in the replies channel and may require a reply from the Proxy Adapter
to be issued in the requests channel. Keepalive packets pertain to either channel.

• The stream associated to each channel is made by UTF-8 characters; since Server version
7.4, a further BOM character at the beginning of the reply stream is tolerated and discarded,
but not recommended.

• Every request type and the corresponding reply type are characterized by a method tag,
which refers, more or less directly, to methods of the Java In-Process Adapter SDK interface.
Similarly for notification types.

• Every request is identified by a unique alphanumeric ID, that must be repeated as the ID of its
corresponding reply. This also holds for backward requests issued by the Remote Adapter
and the corresponding replies; in this case, the Remote Adapter is responsible for the choice
of a unique alphanumeric ID, which is independent from the IDs used by the Proxy Adapter.
For notifications, the ID of the request that originates the notification may be reported.

- 3 -

• Each notification is time stamped, for statistical purposes, with a Java compatible millisecond
resolution date-time (i.e. System.currentTimeMillis).

• All protocol packets are simple pipe-separated text lines, terminated by a line-feed or carriage-
return & line-feed pair; all text is encoded in UTF-8.

• Requests and replies are completely asynchronous, i.e.: there is no need to answer a request
before reading, and possibly answering, the next one.

• Keepalive packets, originated by a Remote Adapter, are available, in order to prevent network
intermediate nodes from dropping the connections because of inactivity. The keepalive pack-
ets are simpler than request, reply and notification packets.

This implies that:
• in order to ensure that data can be transported by text lines, they must be encoded accord-

ingly;
• in order to ensure that correct decoding can be applied for each data segment, corresponding

data types must be specified;
• data values that represent text may need to be properly escaped;
• in order to ensure asynchronous request/reply, a pair of queue & de-queuing-thread must be

created for each channel;
• in order to ensure correct statistical treatment of notification timestamps, in case the counter-

part runs on a separated machine the two machines must be synchronized through NTP or
equivalent network time protocol (this is actually optional, statistics can be ignored and time-
stamp set to 0).

1.3 Packet Structure

The general structure of a protocol packet is as follows:

• request and reply packets:

<ID>|<method>|<data type 1>|<data segment 1>|...|<data type N>|<data segment N>\r\n

• notification packets:

<timestamp>|<method>|<data type 1>|<data segment 1>|...|<data type N>|<data segment N>\
r\n

• keepalive packets:

KEEPALIVE\r\n

Where the lines may also terminate with just \n , possibly depending on the system the originating
peer runs on.

Each data segment typically represents the content of a field or argument of a method, and the corre-
sponding data type represents the native type in which it is expressed. There are a few cases where

- 4 -

the structure above is not respected, particularly in the case of handling of counterpart-generated ex-
ceptions. See on for more details.

1.4 Data Types and Encodings

String
Data type: S
Two different types of encoding are possible:

• “Smart Encoding”, used in most of the packets:
◦ # if null
◦ $ if empty
◦ in any other case, a sequence of characters encoded in UTF-8 with possible

percent-encoded characters;
percent-encoding is also based on UTF-8, but, actually, only the following ascii
characters require percent-encoding:
▪ \r
▪ \n
▪ |
▪ %
▪ +
moreover, the following characters require percent-encoding only when they are
in a string of length 1:
▪ $
▪ #

• “Backward-Compatibility Encoding”, used in the initialization packets:
◦ # if null
◦ $ if empty
◦ standard WWW UTF-8 url-encoding in any other case

Note that the two encodings are similar, as the Smart Encoding just supports both UTF-8-
percent-encoded and plain UTF-8 form for most characters for which the Backward-
Compatibility Encoding only requires UTF-8-percent-encoding. This allows for the use of
shorter representations.
However, the Backward-Compatibility Encoding is not just a special case of the Smart
Encoding, since the WWW UTF-8 url-encoding specifications also require that the space
character is represented as a ‘+’ character, which is not part of Smart Encoding.
Nevertheless, since the ‘+’ character is percent-encoded by Smart Encoding, a string encoded
in this way can be decoded by a standard URLDecode algorithm, provided that it accepts also
unencoded characters.

- 5 -

http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

As said, the need for one or the other encoding is related with the underlying packet type. We
will specify when a packet type requires the Backward-Compatibility Encoding. Where not
specified, the Smart Encoding will be required.

Boolean
Data type: B
Encoding:

• 0 if false
• 1 (or any other value) if true

Integer (32 bit, signed)
Data type: I
Encoding: simple string representation of the integer

Long (64 bit, signed)
Data type: L
Encoding: simple string representation of the long integer

Double (64 bit, signed, IEEE 754 formatted)
Data type: D
Encoding: simple string representation of the double, with decimal point (not comma)

In addition to these simple native types there are structured types, like exceptions and mode arrays,
and the “no data” type:

Void (i.e.: no data)
Data type: V
Encoding: not encoded, data segment is simply not present

Mode array
Data type: M
Encoding:

• # if null
• $ if empty
• a character sequence in any other case, where each character represents a mode

as per the following table:

Character Mode

R Raw

M Merge

D Distinct

C Command

Diff Algorithm array

- 6 -

Data type: F
Encoding:

• # if null
• $ if empty
• a character sequence in any other case, where each character represents a “diff”

algorithm as per the following table:

Character Algorithm

J JSON Patch

M diff-match-patch

Exception
Exceptions can be of generic type or of different subtypes, as per the following table:

Type of exception Data type Encoding

Generic E string-encoding of detail message

Failure EF string-encoding of detail message

Metadata EM string-encoding of detail message

Data ED string-encoding of detail message

Subscription EU string-encoding of detail message

Access EA string-encoding of detail message

Items EI string-encoding of detail message

Schema ES string-encoding of detail message

Notification EN string-encoding of detail message

Credits EC 3 subsequent data segments with:
• string-encoding of detail message
• integer-encoding of client error code
• string-encoding of user message

Conflicting session EX 4 subsequent data segments with:
• string-encoding of detail message
• integer-encoding of client error code
• string-encoding of user message
• string-encoding of conflicting session ID

Resource unavailable ER string-encoding of detail message

String-encoding can be based on either Smart Encoding or Backward-Compatibility Encoding,
depending on the underlying packet type.

Mobile Platform Type
Data type: P
Encoding: a character as per the following table:

- 7 -

Character Platform

A Apple Platforms (iOS, macOS, tvOS, etc.)

G Google Platforms (Android, Chrome, etc.)

The available cases refer to the platform types currently supported.

1.5 Metadata Provider Protocol Packets

Metadata Provider protocol aims at exposing the methods of the MetadataProvider class, of the Java
In-Process Adapter SDK interface, through the protocol. To reduce the protocol overhead, much of the
original Java interface small methods have been aggregated in bigger protocol packets, carrying more
information that are then cached on the Proxy Metadata Adapter side.
The callback methods provided by the Java interface are mapped to backward requests.

For more explanations regarding the semantics of each information, please consult the interface API
documentation, either on Java In-Process Adapter SDK API docs or (for an implementation example)
on .Net Remote Adapter SDK API docs.

Not all methods available in the Java interface have been exposed for Remote Adapters. The Selec-
tors and Customizers, which involve invocations of isSelected and customizeUpdate in the inner loop
of data dispatching, cannot be used. As a consequence, isSelectorAllowed and enableUpdateCus-
tomization are implemented by the Proxy Metadata Adapter to always return false.

The Metadata Provider protocol only consists in requests and backward requests and the correspond-
ing replies; hence no notifications are included. We will refer to its channels as the Metadata requests
channel and the Metadata replies channel.
In practice, the Proxy Metadata Adapter and the Remote Metadata Adapter communicate through a
TCP connection carrying the Metadata requests channel and the Metadata replies channel as the two
streams.

Metadata Init
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: MPI

Data segments:
• N initialization parameter name-value pairs, both names and values as string;

all strings should be encoded with the Backward-Compatibility Encoding.

The parameters are supplied by the Proxy Adapter based on its own configuration in
an unspecified order.
A parameter named “ARI.version” will always be supplied, to carry the maximum
protocol version supported by the Proxy Adapter.
A parameter named “keepalive_hint.millis”, if present, specifies the inactivity time
after which a keepalive packet should be issued on the replies channel to prevent the

- 8 -

Proxy Adapter from closing the connection for inactivity. Note that the value is a
number, but encoded as a string.

<ID>|MPI|S|<param 1>|S|<param 1 value>|...|S|ARI.version|S|<version>|...|S|
<param N>|S|<param N value>

Expected reply data segments:
• N initialization parameter name-value pairs, both names and values as string;

 all strings will be encoded with the Backward-Compatibility Encoding.

The supplied parameters are handled by the Proxy Adapter based on its own
configuration and regardless of their order.
A parameter named “ARI.version” is mandatory, to carry the protocol version that
the Remote Metadata Adapter is willing to use. Based on it, the Proxy Adapter will
either proceed or interrupt the connection. If it is lower than the request’s
ARI.version, the Proxy Adapter may still support it and proceed. If it is higher, the
Proxy Adapter will interrupt (the Proxy Adapter will recognize the response,
regardless of its protocol version); in this case, returning a Generic Exception (see
below) is also an option.

<ID>|MPI|S|<param 1>|S|<param 1 value>|...|S|ARI.version|S|<version>|...|S|
<param N>|S|<param N value>

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic or Metadata type (based on the Backward-Compatibility Encoding for strings). This
will cause the Proxy Adapter to interrupt the connection. The Proxy Adapter will recognize
such response, regardless of its protocol version.

Examples:

 10000010c3e4d0462|MPI|S|ARI.version|S|1.8.2|S|keepalive_hint.millis|S|8000|S|
adapters_conf.id|S|DEMO|S|proxy.instance_id|S|hewbc3ikbbctyui|...
 10000010c3e4d0462|MPI|S|ARI.version|S|1.8.2

 10000010c3e4d0462|MPI|S|ARI.version|S|1.8.2|S|adapters_conf.id|S|DEMO|S|prox-
y.instance_id|S|hewbc3ikbbctyui|...
 10000010c3e4d0462|MPI|S|ARI.version|S|1.8.2|S|user|S|remote1|S|password|S|fd-
hjkslghak

 20000010c3e4d0462|MPI|S|ARI.version|S|1.8.2|S|custom:feed_name|S|feed1|S|cus-
tom:feed_port|S|8080|...
 20000010c3e4d0462|MPI|EM|Authentication+Feed+unavailable

Notify User
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: NUS

Data segments:
• 1 user name, as string (can be null for the anonymous user)

- 9 -

• 1 user password, as string (can be null if no password is specified)
• N http header name-value pairs, both names and values as string

The last pair is added by the Server; the name is “REQUEST_ID” and the value is a
unique id assigned to the client request.

<ID>|NUS|S|<user name>|S|<user password>|S|<header 1>|S|<header value 1>|...|S|
<header N>|S|<header value N>|S|REQUEST_ID|S|<id>

Expected reply data segments:
• 1 allowed max bandwidth, as double

Edition note: Bandwidth Control is an optional feature, available depending on Edition and
License Type. To know what features are enabled by your license, please see the License tab
of the Monitoring Dashboard (by default, available at /dashboard).

• 1 wants table (i.e. subscription) notifications flag, as boolean

<ID>|NUS|D|<allowed max bandwidth>|B|<wants table notifications flag>

As you can see, this request also integrates the getAllowedMaxBandwidth and wantsTa-
blesNotification methods of the Java interface.

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic, Access, ResourceUnavailable, or Credits type; for Credits exceptions, the error code
must be either 0 or negative.

Examples:

 10000010c3e4d0462|NUS|S|user1|S|password|S|host|S|www.mycompany.com|...
 10000010c3e4d0462|NUS|D|40|B|0

 20000010c3e4d0462|NUS|S|#|S|#|S|connection|S|Keep-Alive|...
 20000010c3e4d0462|NUS|EC|Anonymous+user+not+allowed|-1099|#

Notify User (extended version to carry identification data included in the client SSL certificate)
Edition note: https connections is an optional feature, available depending on Edition and License Type.
To know what features are enabled by your license, please see the License tab of the Monitoring Dash-
board (by default, available at /dashboard).
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: NUA

Data segments:
• 1 user name, as string (can be null for the anonymous user)
• 1 user password, as string (can be null if no password is specified)
• 1 client principal, as string (can be null if client not authenticated)
• N http header name-value pairs, both names and values as string

The last pair is added by the Server; the name is “REQUEST_ID” and the value is a
unique id assigned to the client request.

- 10 -

<ID>|NUA|S|<user name>|S|<user password>|S|<client principal>|S|<header 1>|S|
<header value 1>|...|S|<header N>|S|<header value N>|S|REQUEST_ID|S|<id>

Expected reply data segments:
• 1 allowed max bandwidth, as double

Edition note: Bandwidth Control is an optional feature, available depending on Edition and
License Type. To know what features are enabled by your license, please see the License tab
of the Monitoring Dashboard (by default, available at /dashboard).

• 1 wants table (i.e. subscription) notifications flag, as boolean

<ID>|NUA|D|<allowed max bandwidth>|B|<wants table notifications flag>

As you can see, this request, like its base version, also integrates the getAllowedMaxBand-
width and wantsTablesNotification methods of the Java interface.

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic, Access, ResourceUnavailable, or Credits type; for Credits exceptions, the error code
must be either 0 or negative.

Examples:

 10000010c3e4d0462|NUA|S|user1|S|password|S|cn=john,cn=users,dc=acme,dc=com
|S|host|S|www.mycompany.com|...
 10000010c3e4d0462|NUA|D|40|B|0

 20000010c3e4d0462|NUA|S|user1|S|password|S|#|S|connection|S|Keep-Alive|...
 20000010c3e4d0462|NUA|EC|Unauthenticated+user+not+allowed|-1098|#

Notify New Session
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: NNS

Data segments:
• 1 user name, as string (can be null for the anonymous user)
• 1 session ID, as string
• N client context name-value pairs, both names and values as string

The possible pairs differ from the Java interface notifyNewSession case, because
the “HTTP_HEADERS” property is not provided; a “REQUEST_ID” property is
provided instead (see notes below).

<ID>|NNS|S|<user name>|S|<session ID>|S|<context prop name 1>|S|<context prop 1
value>|...|S|<context prop name N>|S|<context prop N value>

Expected reply data segments: two possibilities are available:

• none (a void is expected)

- 11 -

<ID>|NNS|V

• the following:
◦ 1 time to live, as integer

<ID>|NNS|I|<time to live>

As you can see, this request also integrates the getSessionTimeToLive method of the Java in-
terface.

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic, Notification, Credits or Conflicting Session type. In the last case, a second invocation
of the command with the same “REQUEST_ID” and a different session ID will be received. For
Credits or Conflicting Session exceptions, the error code must be either 0 or negative.

Examples:

 30000010c3e4d0462|NNS|S|user1|S|S8f3da29cfc463220T5454537|S|REMOTE_IP|
S|192.168.0.1|...
 30000010c3e4d0462|NNS|V

 30000010c3e4d0462|NNS|S|user1|S|Sc4a1769b6bb83a4aT2852044|S|REMOTE_IP|
S|192.168.0.1|...
 30000010c3e4d0462|NNS|I|300

 40000010c3e4d0462|NNS|S|user1|S|S9cb4758037a95c01T0439915|S|USER_AGENT|S|#|...
 40000010c3e4d0462|NNS|EX|No+more+than+one+session+allowed|-1101|#|
S8f3da29cfc463220T5454537

Notify Session Close
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: NSC

Data segments:
• 1 session ID, as string

<ID>|NSC|S|<session ID>

Expected reply data segments: none, a void is expected

<ID>|NSC|V

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic or Notification type.

Examples:

 20000010c3e4d0462|NSC|S|S8f3da29cfc463220T5454537

- 12 -

 20000010c3e4d0462|NSC|V

 30000010c3e4d0462|NSC|S|S9cb4758037a95c01T0439915
 30000010c3e4d0462|NSC|EN|Session+not+open

Force Session Termination
Direction: from counterpart to Proxy Adapter (backward request)
Expects reply: yes
Method tag: FST

Data segments: two possibilities are available

• short form
◦ 1 session ID, as string
◦ a void

<ID>|FST|S|<session ID>|V

• full form
◦ 1 session ID, as string
◦ 1 cause code, as integer
◦ 1 cause message, as string

<ID>|FST|S|<session ID>|I|<cause code>|S|<cause message>

Expected reply data segments: none, a void is expected

<ID>|FST|V

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic type.

Examples:

 20000010c3e4d0462|FST|S|S8f3da29cfc463220T5454537|V
 20000010c3e4d0462|FST|V

 30000010c3e4d0462|FST|S|S9cb4758037a95c01T0439915|I|-2|S|timeout+expired
 30000010c3e4d0462|FST|E|internal+error

Get Items
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: GIS

Data segments:
• 1 user name, as string (can be null for the anonymous user)
• 1 item group name (or item list specification), as string

- 13 -

• 1 session ID, as string

<ID>|GIS|S|<user name>|S|<item group name>|S|<session ID>

Expected reply data segments:
• N item names, as string

<ID>|GIS|S|<item 1>|S|<item 2>|...|S|<item N>

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic or Items type.

Examples:

 50000010c3e4d0462|GIS|S|#|S|nasdaq100_AA_AL|S|S8f3da29cfc463220T5454537
 50000010c3e4d0462|GIS|S|aapl|S|atvi|S|adbe|S|akam|S|altr

 60000010c3e4d0462|GIS|S|#|S|nasdaq100_AA_AL|S|S9cb4758037a95c01T0439915
 60000010c3e4d0462|GIS|EI|Unknown+group

Get Schema
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: GSC

Data segments:
• 1 user name, as string (can be null for the anonymous user)
• 1 item group name (or item list specification), as string
• 1 field schema name (or field list specification), as string
• 1 session ID, as string

<ID>|GSC|S|<user name>|S|<item group name>|S|<field schema name>|S|<session ID>

Expected reply data segments:
• N field names, as string

<ID>|GSC|S|<field 1>|S|<field 2>|...|S|<field N>

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic, Items or Schema type.

Examples:

 70000010c3e4d0462|GSC|S|#|S|nasdaq100_AA_AL|S|short|S|S8f3da29cfc463220T5454537
 70000010c3e4d0462|GSC|S|last_price|S|time|S|pct_change

 80000010c3e4d0462|GSC|S|#|S|nasdaq100_AA_AL|S|short|S|S9cb4758037a95c01T0439915
 80000010c3e4d0462|GSC|ES|Unknown+schema

- 14 -

Get Item Data
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: GIT

Data segments:
• N item names, as string

<ID>|GIT|S|<item 1>|S|<item 2>|...|S|<item N>

Expected reply data segments:
• N item data structures, composed by:

• 1 distinct snapshot length, as integer
• 1 min source frequency, as double
• 1 allowed modes, as Mode array

<ID>|GIT|I|<dist. snapsh. len. 1>|D|<min source freq. 1>|M|<all. modes 1>|...
...|I|<dist. snapsh. len. N>|D|<min source freq. N>|M|<all. modes N>

As you can see, this request replaces the getDistinctSnapshotLength, getMinSourceFre-
quency and modeMayBeAllowed methods of the Java interface.
Note that empty or null Mode arrays are accepted but pointless, as preventing all subscrip-
tions.

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic type.

Examples:

 90000010c3e4d0462|GIT|S|aapl|S|atvi
 90000010c3e4d0462|GIT|I|10|D|0|M|RMDC|I|30|D|0.01|M|R

 a0000010c3e4d0462|GIT|S|aapl|S|atvi
 a0000010c3e4d0462|GIT|E|Database+connection+error

Get User Item Data
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: GUI

Data segments:
• 1 user name, as string (can be null for the anonymous user)
• N item names, as string

<ID>|GUI|S|<user name>|S|<item 1>|S|<item 2>|...|S|<item N>

Expected reply data segments:

- 15 -

• N user item data structures, composed by:
• 1 allowed buffer size, as integer
• 1 allowed max frequency, as double

Edition note: A further global frequency limit could also be imposed by the Server,
depending on Edition and License Type. To know what features are enabled by your
license, please see the License tab of the Monitoring Dashboard (by default, available at
/dashboard).

• 1 allowed modes, as Mode array

<ID>|GUI|I|<all. buf. size 1>|D|<all. max freq. 1>|M|<all. modes 1>|...
...|I|< all. buf. size N>|D|<all. max freq. N>|M|<all. modes N>

As you can see, this request replaces the getAllowedBufferSize, getAllowedMaxItemFre-
quency and isModeAllowed methods of the Java interface.
Note that empty or null Mode arrays are accepted but pointless, as preventing all subscrip-
tions.

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic type.

Examples:

 b0000010c3e4d0462|GUI|S|user1|S|aapl|S|atvi
 b0000010c3e4d0462|GUI|I|30|D|3|M|RMDC|I|30|D|0.3|M|$

 c0000010c3e4d0462|GUI|S|#|S|aapl|S|atvi
 c0000010c3e4d0462|GUI|E|Database+connection+error

Notify User Message
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: NUM

Data segments:
• 1 user name, as string (can be null for the anonymous user)
• 1 session ID, as string
• 1 user message, as string

<ID>|NUM|S|<user name>|S|<session ID>|S|<user message>

Expected reply data segments: none, a void is expected

<ID>|NUM|V

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic, Notification or Credits type; for Credits exceptions, the error code must be either 0 or
negative.

Examples:

- 16 -

 d0000010c3e4d0462|NUM|S|user1|S|S8f3da29cfc463220T5454537|S|stop+logging
 d0000010c3e4d0462|NUM|V

 e0000010c3e4d0462|NUM|S|#|S|S9cb4758037a95c01T0439915|S|start+logging
 e0000010c3e4d0462|NUM|EC|Anonymous+user+logging+not+allowed|-1095|#

Notify New Tables
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: NNT

Data segments:
• 1 user name, as string (can be null for the anonymous user)
• 1 session ID, as string
• N table (i.e. subscription) info structures, composed by:

• 1 window index, as integer
• 1 publishing mode, as 1-length Mode array
• 1 item group name (or item list specification), as string
• 1 data adapter name, as string
• 1 field schema name (or field list specification), as string
• 1 index of the first item, as integer
• 1 index of the last item, as integer
• 1 selector, as string (can be null if no selector is associated)
• 1 number of items, as integer
• M item name, as string, where M corresponds to the number of items specified

above

<ID>|NNT|S|<user name>|S|<session ID>|
I|<win. index 1>|M|<pub. mode 1>|S|<item group 1>|S|<data adapter 1>|
S|<field schema 1>|I|<first item idx. 1>|I|<last item idx. 1>|S|<selector 1>|
I|<number of items 1 := M1>|S|<item name 1.1>|...S|<item name 1.M1>|
...
I|<win. index N>|M|<pub. mode N>|S|<item group N>|S|<data adapter N>|
S|<field schema N>|I|<first item idx. N>|I|<last item idx. N>|S|<selector N>|
I|<number of items N := MN>|S|<item name N.1>|...S|<item name N.MN>

(BTW selector information is currently redundant, as any request with a non-null selector has
already been refused, since the Proxy Metadata Adapter always returns false to isSelectorAl-
lowed)

Expected reply data segments: two possibilities are available:

• none (a void is expected)

<ID>|NNT|V

• the following:
◦ 1 enable unsubscriptions flag, as boolean

- 17 -

◦ 1 wants final statistics flag, as boolean

where a positive enable unsubscriptions flag is needed to enable the support of a sub-
sequent FUS request on this subscription (however, if more than one table info struc-
tures is included, the FUS request will not be supported anyway);
on the other hand, a positive wants final statistics flag is needed to receive the full ver-
sion of the final NNT request (which includes traffic statistics) for this subscription; oth-
erwise, the reduced version of NNT will be received; note that the final statistics may, in
some cases, increase the size of the notification significantly.

<ID>|NNT|B|<enable unsubscriptions flag>|B|<wants final statistics flag>

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic, Notification or Credits type; for Credits exceptions, the error code must be either 0 or
negative.

Examples:

 f0000010c3e4d0462|NNT|S|#|S|S8f3da29cfc463220T5454537|I|1|M|M|
S|nasdaq100_AA_AL|S|QUOTES|S|short|I|1|I|5|S|#|I|5|S|aapl|S|atvi|S|adbe|S|akam|S|altr
 f0000010c3e4d0462|NNT|V

 f0000010c3e4d0462|NNT|S|#|S|Sc4a1769b6bb83a4aT2852044|I|1|M|M|
S|nasdaq100_AA_AL|S|QUOTES|S|short|I|1|I|5|S|#|I|5|S|aapl|S|atvi|S|adbe|S|akam|S|altr
 f0000010c3e4d0462|NNT|B|0|B|1

 10000010c3e4d0462|NNT|S|#|S|S9cb4758037a95c01T0439915|I|1|M|M|
S|nasdaq100_AA_AL|S|QUOTES|S|short|I|1|I|5|S|#|I|5|S|aapl|S|atvi|S|adbe|S|akam|S|altr
 10000010c3e4d0462|NNT|EN|Session+timed+out

Notify Tables Close
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: NTC

Data segments: two possibilities are available, depending on the response to the correspond-
ing NNT request:

• reduced version
◦ 1 session ID, as string
◦ N reduced table (i.e. subscription) info structures, composed by:

▪ 1 window index, as integer
▪ 1 publishing mode, as 1-length Mode array
▪ 1 item group name (or item list specification), as string
▪ 1 data adapter name, as string
▪ 1 field schema name (or field list specification), as string
▪ 1 index of the first item, as integer
▪ 1 index of the last item, as integer

- 18 -

▪ 1 selector, as string (can be null if no selector is associated)
▪ 1 number of items, as integer
▪ M item name, as string, where M corresponds to the number of items

specified above
▪ 1 number of item statistics == 0, as integer

<ID>|NTC|S|<session ID>|
I|<win. index 1>|M|<pub. mode 1>|S|<item group 1>|S|<data adapter 1>|
S|<field schema 1>|I|<first item idx. 1>|I|<last item idx. 1>|S|<selector 1>|
I|<number of items 1 := M1>|S|<item name 1.1>|...S|<item name 1.M1>|I|0
...
I|<win. index N>|M|<pub. mode N>|S|<item group N>|S|<data adapter N>|
S|<field schema N>|I|<first item idx. N>|I|<last item idx. N>|S|<selector N>|
I|<number of items N := MN>|S|<item name N.1>|...S|<item name N.MN>|I|0

• full version with final statistics
◦ 1 session ID, as string
◦ N full table (i.e. subscription) info structures, composed by:

▪ 1 window index, as integer
▪ 1 publishing mode, as 1-length Mode array
▪ 1 item group name (or item list specification), as string
▪ 1 field schema name (or field list specification), as string
▪ 1 index of the first item, as integer
▪ 1 index of the last item, as integer
▪ 1 selector, as string (can be null if no selector is associated)
▪ 1 data adapter name, as string
▪ 1 number of items, as integer
▪ M item name, as string, where M corresponds to the number of items

specified above
▪ 1 number of item statistics == M, as integer
▪ M item statistics info structures, composed by:

• 1 real-time events sent, as long
• 1 lost events, as long
• 1 filtered out events, as long

<ID>|NTC|S|<session ID>|
I|<win. index 1>|M|<pub. mode 1>|S|<item group 1>|S|<data adapter 1>|
S|<field schema 1>|I|<first item idx. 1>|I|<last item idx. 1>|S|<selector 1>|
I|<number of items 1 := M1>|S|<item name 1.1>|...S|<item name 1.M1>|
I|<M1>|L|<real-time 1.1>|L|<lost 1.1>|L|<filtered 1.1>|
...L|<real-time 1.M1>|L|<lost 1.M1>|L|<filtered 1.M1>
...
I|<win. index N>|M|<pub. mode N>|S|<item group N>|S|<data adapter N>|
S|<field schema N>|I|<first item idx. N>|I|<last item idx. N>|S|<selector N>|
I|<number of items N := MN>|S|<item name N.1>|...S|<item name N.MN>|
I|<MN>|L|<real-time N.1>|L|<lost N.1>|L|<filtered N.1>|
...L|<real-time N.MN>|L|<lost N.MN>|L|<filtered N.MN>

(BTW selector information is currently redundant, as any request with a non-null selector has
already been refused, since the Proxy Metadata Adapter always returns false to isSelectorAl-
lowed)

Expected reply data segments: none, a void is expected

- 19 -

<ID>|NTC|V

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic or Notification type.

Examples:

 f0000010c3e4d0462|NTC|S|S8f3da29cfc463220T5454537|I|1|M|M|
S|nasdaq100_AA_AL|S|QUOTES|S|short|I|1|I|5|S|#|
I|5|S|aapl|S|atvi|S|adbe|S|akam|S|altr|I|0
 f0000010c3e4d0462|NTC|V

 10000010c3e4d0462|NTC|S|S9cb4758037a95c01T0439915|I|1|M|M|
S|nasdaq100_AA_AL|S|QUOTES|S|short|I|1|I|2|S|#|
I|2|S|aapl|S|atvi|I|2|
L|150|L|230|L|0|L|23|L|0|L|0
 10000010c3e4d0462|NTC|EN|Table+not+open

Force Unsubscription
Direction: from counterpart to Proxy Adapter (backward request)
Expects reply: yes
Method tag: FUS

Data segments:
• 1 session ID, as string
• 1 window index, as integer

<ID>|FUS|S|<session ID>|I|<window index>

Expected reply data segments:
• 1 processed flag, as boolean

where a false processed flag indicates that the request was not supported, hence not
processed at all; see NNT for a resume of the conditions for the support of this re-
quest.

<ID>|FUS|B|<processed flag>

Note that in the Java interface the corresponding method pertains to the proper TableInfo ob-
ject.

Reply can also be an exception of Generic type.

Examples:

 20000010c3e4d0462|FUS|S|S8f3da29cfc463220T5454537|I|11
 20000010c3e4d0462|FST|B|1

 30000010c3e4d0462|FST|S|S9cb4758037a95c01T0439915|I|12

- 20 -

 30000010c3e4d0462|FST|E|internal+error

Notify MPN Device Access
Edition note: Push Notifications is an optional feature, available depending on Edition and License Type.
To know what features are enabled by your license, please see the License tab of the Monitoring Dash-
board (by default, available at /dashboard).
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: MDA

Data segments:
• 1 user name, as string
• 1 session ID, as string
• 1 mobile platform type
• 1 application ID (a.k.a. package name), as string
• 1 device token (a.k.a. registration ID), as string

<ID>|MDA|S|<user name>|P|<platform type>|S|<application ID>|S|<device token>

Expected reply data segments: none, a void is expected

<ID>|MDA|V

Alternatively, the reply can contain a single data segment consisting of an exception of Credits
or Notification type; for Credits exceptions, the error code must be either 0 or negative.

Example:

 b00000147c9bc4c74|MDA|S|$|S|S8f3da29cfc463220T5454537|P|A|S|com.lightstream-
er.demo.ios.stocklistdemo|S|f780e9d8ffc86a5ec9a329e7745aa8fb3a1ecce77c09e202ec24cf-
f14a9906f1
 b00000147c9bc4c74|MDA|V

 c00000147cac69643|MDA|S|$|S|S9cb4758037a95c01T0439915|P|A|S|com.lightstream-
er.demo.ios.stocklistdemo|S|f780e9d8ffc86a5ec9a329e7745aa8fb3a1ecce77c09e202ec24cf-
f14a9906f1
 c00000147cac69643|MDA|EC|banned+token

Notify MPN Subscription Activation
Edition note: Push Notifications is an optional feature, available depending on Edition and License Type.
To know what features are enabled by your license, please see the License tab of the Monitoring Dash-
board (by default, available at /dashboard).
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: MSA

Data segments:
• 1 user name, as string
• 1 session ID, as string

- 21 -

• 1 table (i.e. subscription) info structure, composed by:
• 1 window index, as integer
• 1 publishing mode, as 1-length Mode array
• 1 item group name (or item list specification), as string
• 1 data adapter name, as string
• 1 field schema name (or field list specification), as string
• 1 index of the first item, as integer
• 1 index of the last item, as integer
• 1 number of items as integer
• M item name, as string, where M corresponds to the number of items

specified above
• 1 MPN subscription info structure, composed by:

• 1 mobile platform type
• 1 application ID, as string
• 1 device token, as string
• 1 trigger expression, as string
• 1 notification format, as string

The “notification format” field is a descriptor of the push notifications format of this sub-
scription. The structure of the format descriptor depends on the platform type and it is
represented in json.

<ID>|MSA|S|<user name>|S|<session ID>|I|<win. index>|M|<pub. Mode>|
S|<item group>|S|<data adapter>|S|<field schema>|
I|<first item idx.>|I|<last item idx.>|
I|<number of items := M>|S|<item name 1>|...S|<item name M>|
P|A|S|<application ID>|S|<device token>|S|<trigger>|
S|<notification format>

Expected reply data segments: none, a void is expected

<ID>|MSA|V

Alternatively, the reply can contain a single data segment consisting of an exception of Cred-
its or Notification type; for Credits exceptions, the error code must be either 0 or negative.

Examples:

 c00000147c9bc4c74|MSA|S|$|S|Sc4a1769b6bb83a4aT2852044|I|1|M|M|S|item4+item19|S|
QUOTES|S|stock_name+last_price+time|I|1|I|2|I|2|S|item4|S|item9|P|A|S|com.lightstream-
er.demo.ios.stocklistdemo|S|f74d8ffc5ee7cb31749a329a8f9202867c0a9906e80ee7f9eecc-
ca1f24c5aaf1|S|Double.parseDouble%28%24%7Blast_price%7D%29+%3E+1000.0|S|%7B%22aps
%22%3A%7B%22alert%22%3A%22%24%7Bmessage%7D%22%2C%22badge%22%3A%22AUTO%22%7D%2C
%22acme2%22%3A%5B%22%24%7Btag1%7D%22%2C%22%24%7Btag2%7D%22%5D%7D
 c00000147c9bc4c74|MSA|V

 c00000147cac69643|MSA|S|#|S|S401e2449d3b79feT1213883|I|1|M|M|S|item4+item19|S|
QUOTES|S|stock_name+last_price+time|I|1|I|2|I|2|S|item4|S|item9|P|G|S|com.lightstream-
er.demo.android.stocklistdemo|S|2082055669|S|Double.parseDouble%28%24%7Blast_price%7D
%29+%3E+1000.0|S|%7B%22priority%22%3A%22NORMAL%22%2C%22notification%22%3A%7B%22icon
%22%3A%22my_icon%22%2C%22body%22%3A%22my_body%22%2C%22title%22%3A%22my_title%22%7D%7D

- 22 -

 c00000147cac69643|MSA|EC|too+many+subscriptions

Notify MPN Device Token Change
Edition note: Push Notifications is an optional feature, available depending on Edition and License Type.
To know what features are enabled by your license, please see the License tab of the Monitoring Dash-
board (by default, available at /dashboard).
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: MDC

Data segments:
• 1 user name, as string
• 1 session ID, as string
• 1 mobile platform type
• 1 application ID (a.k.a. package name), as string
• 1 device token (a.k.a. registration ID), as string
• 1 new device token, as string

<ID>|MDC|S|<user name>|P|<platform type>|S|<application ID>|S|<device token>|
S|<new device token>

Expected reply data segments: none, a void is expected

<ID>|MDC|V

Alternatively, the reply can contain a single data segment consisting of an exception of Credits
or Notification type; for Credits exceptions, the error code must be either 0 or negative.

Example:

 3700000147c9bc4c74|MDC|S|$|S|<session ID>|P|A|S|com.lightstreamer.demo.ios.s-
tocklistdemo|S|f780e9d8ffc86a5ec9a329e7745aa8fb3a1ecce77c09e202ec24cff14a9906f1|S|
0849781a0afe0311f58bbfee1fcde031bfc56635c89c566dda3c6708fd893549
 3700000147c9bc4c74|MDC|V

Failure
Direction: from counterpart to Proxy Adapter (backward request)
Expects reply: no
Method tag: FAL

Data segments:
• 1 reason, as generic exception

<ID>|FAL|E|<reason>

Note that the ID of this request is not actually relevant.

Examples:

- 23 -

 3700000147c9bc4c74|FAL|E|Connection+lost

1.6 Data Provider Protocol Packets

Data Provider protocol aims at exposing the methods of the DataProvider class, of the Java In-
Process Adapter SDK interface, through the protocol. To find the best trade-off between pros of inter-
face remoting and cons of protocol overhead, some of the original Java interface methods have not
been remotized, and others have been aggregated.
In particular, the “smart” version of the data exchange is not possible here and having different flavors
of update is of no advantage. In addition, setListener is obviously not needed.

On the other hand, isSnapshotAvailable has not been ported and it is implemented by the Proxy Data
Adapter to always return true. As a consequence, upon a successful subscription, the Remote Adapter
is always due to send the item snapshot; if no snapshot information is available, an empty snapshot
should be specified.

Another noteworthy difference is that the Proxy Data Adapter, to simplify its own logic, does not wait
for the response to Subscribe; rather, it considers subscriptions always immediately successful; then,
if the response is an exception, it just logs the fact at ERROR level. In practice, returning an exception
from Subscribe doesn’t invalidate the subscription at LS Server level. As a consequence, the final Un-
subscribe will still always be issued.
Another consequence is that, if, despite the subscription failure, any updates or other notifications are
sent for the subscription, they will reach the client as usual.
Likewise, the Proxy Data Adapter does not wait for the response to Unsubscribe, but considers the un-
subscriptions always immediately successful. This means that some subscription-related notifications
sent just before sending the response to Unsubscribe may be considered already late and discarded.

For more explanations regarding the semantics of each information, please refer to the interface API
documentation of the Java In-Process Adapter SDK.

The Data Provider protocol involves requests, replies, and notifications, whereas it does not include
backward requests and corresponding replies. We will refer to its channels as the Data requests
channel and the Data replies channel.
In practice, the Proxy Data Adapter and the Remote Data Adapter communicate through a TCP con-
nection carrying the Data requests channel and the Data replies channel as the two streams.

However, in order to support old Remote Data Adapters, the Proxy Data Adapter can communicate
also through two separate TCP connections. In fact, for Server versions earlier than 7.4, this was the
only way available for the communication.
For this reason, for convenience, we will also refer to distinct channels for replies and notifications,
namely the Data pure-replies channel and the Data notifications channel, with obvious meaning,
where the Data replies channel will be the union of the two.
In fact, in the two-connections communication, one connection carries the Data requests channel and
the Data pure-replies channel as the two streams, and the other one carries the Data notifications
channel as the only stream (that is, as a one-way connection).

- 24 -

Data Init
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: DPI

Data segments:
• N initialization parameter name-value pairs, both names and values as string;

all strings should be encoded with the Backward-Compatibility Encoding.

The parameters are supplied by the Proxy Adapter based on its own configuration in
an unspecified order.
A parameter named “ARI.version” will always be supplied, to carry the maximum
protocol version supported by the Proxy Adapter.
A parameter named “keepalive_hint.millis”, if present, specifies the inactivity time
after which a keepalive packet should be issued on the replies channel to prevent
the Proxy Adapter from closing the connection for inactivity. However, with the old
two-connections communication, this applies independently to the pure-replies
channel and the notifications channel. Note that the value is a number, but encoded
as a string.

<ID>|DPI|S|<param 1>|S|<param 1 value>|...|S|ARI.version|S|<version>|...|S|
<param N>|S|<param N value>

Expected reply data segments:
• N initialization parameter name-value pairs, both names and values as string;

all strings will be encoded with the Backward-Compatibility Encoding.

The supplied parameters are handled by the Proxy Adapter based on its own
configuration and regardless of their order.
A parameter named “ARI.version” is mandatory, to carry the protocol version that
the Remote Data Adapter is willing to use. Based on it, the Proxy Adapter will either
proceed or interrupt the connection. If it is lower than the request’s ARI.version, the
Proxy Adapter may still support it and proceed. If it is higher, the Proxy Adapter will
interrupt (the Proxy Adapter will recognize the response, regardless of its protocol
version); in this case, returning a Generic Exception (see below) is also an option.

<ID>|DPI|S|<param 1>|S|<param 1 value>|...|S|ARI.version|S|<version>|...|S|
<param N>|S|<param N value>

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic or Data type (based on the Backward-Compatibility Encoding for strings). This will
cause the Proxy Adapter to interrupt the connection. The Proxy Adapter will recognize such
response, regardless of its protocol version.

Examples:

- 25 -

 10000010c3e4d0462|DPI|S|ARI.version|S|1.8.2|S|keepalive_hint.millis|S|8000|S|
adapters_conf.id|S|DEMO|S|data_provider.name|S|STOCKLIST|...
 10000010c3e4d0462|DPI|S|ARI.version|S|1.8.2

 10000010c3e4d0462|DPI|S|ARI.version|S|1.8.2|S|adapters_conf.id|S|DEMO|S|
data_provider.name|S|STOCKLIST|...
 10000010c3e4d0462|DPI|S|ARI.version|S|1.8.2|S|user|S|remote1|S|password|S|fd-
hjkslghak

 20000010c3e4d0462|DPI|S|ARI.version|S|1.8.2|S|custom:feed_name|S|feed1|S|cus-
tom:feed_port|S|8080|...
 20000010c3e4d0462|DPI|ED|Data+Feed+unavailable

Subscribe
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: SUB

Data segments:
• 1 item name, as string

<ID>|SUB|S|<item name>

Expected reply data segments: none, a void is expected

<ID>|SUB|V

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic, Subscription or Failure type.

Examples:

 10000010c3e4d0462|SUB|S|aapl
 10000010c3e4d0462|SUB|V

 20000010c3e4d0462|SUB|S|xyzy
 20000010c3e4d0462|SUB|EU|Unknown+item

Unsubscribe
Direction: from Proxy Adapter to counterpart
Expects reply: yes
Method tag: USB

Data segments:
• 1 item name, as string

<ID>|USB|S|<item name>

Expected reply data segments: none, a void is expected

- 26 -

<ID>|USB|V

Alternatively, the reply can contain a single data segment consisting of an exception of
Generic, Subscription or Failure type.

Examples:

 30000010c3e4d0462|USB|S|aapl
 30000010c3e4d0462|USB|V

 40000010c3e4d0462|USB|S|xyzy
 40000010c3e4d0462|USB|EU|Item+not+subscribed

End Of Snapshot
Direction: from counterpart to Proxy Adapter (notification)
Expects reply: no
Method tag: EOS

Data segments:
• 1 item name, as string
• 1 unique ID of the originating subscription request, as string

<timestamp>|EOS|S|<item name>|S|<ID>

Examples:

 1152096504423|EOS|S|aapl|S|10000010c3e4d0462

Update By Map
Direction: from counterpart to Proxy Adapter (notification)
Expects reply: no
Method tag: UD3

Data segments:
• 1 item name, as string
• 1 unique ID of the originating subscription request, as string
• 1 is snapshot flag, as boolean
• N field-value pairs, composed by:

• 1 field name, as string
• 1 field value, as string or byte array

<timestamp>|UD3|S|<item name>|S|<ID>|B|<is snapshot>|S|<field 1>|S|<value
1>| ... |S|<field N>|S|<value N>

<timestamp>|UD3|S|<item name>|S|<ID>|B|<is snapshot>|S|<field 1>|Y|<value
1>| ... |S|<field N>|Y|<value N>

- 27 -

Note: the special mandatory fields for items to be requested in COMMAND mode, named
“key” and “command”, must be encoded as string.

Examples:

 1152096504423|UD3|S|aapl|S|10000010c3e4d0462|B|1|S|pct_change|S|0.44|
S|last_price|S|6.82|S|time|S|12%3a48%3a24

 1152096504423|UD3|S|aapl|S|10000010c3e4d0462|B|1|S|pct_change|Y|MC40NA==|
S|last_price|Y|Ni44Mg==|S|time|Y|MTI6NDg6MjQ=

Declare Field Diff Order
Direction: from counterpart to Proxy Adapter (notification)
Expects reply: no
Method tag: DFD

Data segments:
• 1 item name, as string
• 1 unique ID of the originating subscription request, as string
• N field-value pairs, composed by:

• 1 field name, as string
• 1 algorithm list, as Diff Algorithm array

<timestamp>|DFD|S|<item name>|S|<ID>|S|<field 1>|F|<algorithm list 1>| ... |
S|<field N>|F|<algorithm list N>

Note that if a null value is passed as a Diff Algorithm array, the entry will be just ignored. On
the other hand, an empty array declares that the Field supports no algorithm and the Server
default behavior doesn’t apply.

Examples:

 1152096504423|DFD|S|aapl|S|10000010c3e4d0462|S|message|F|MJ|
S|timestamp|A|$

Clear Snapshot
Direction: from counterpart to Proxy Adapter (notification)
Expects reply: no
Method tag: CLS

Data segments:
• 1 item name, as string
• 1 unique ID of the originating subscription request, as string

<timestamp>|CLS|S|<item name>|S|<ID>

Examples:

 1152096504423|CLS|S|aapl|S|10000010c3e4d0462

- 28 -

Failure
Direction: from counterpart to Proxy Adapter (notification)
Expects reply: no
Method tag: FAL

Data segments:
• 1 reason, as generic exception

<timestamp>|FAL|E|<reason>

Examples:

 1152096504423|FAL|E|Connection+lost

1.7 Common Packets

The following packets are not part of the communication with the Adapters, but rather connection-re-
lated and may pertain to multiple channels.

Remote Adapter Credentials
Direction: from counterpart to Proxy Adapter
Channels:

• Metadata Adapter replies channel
• Data Adapter replies channel

Method tag: RAC

This special packet is sent on replies channels, but it does not take the form of a backward re-
quests, but rather of an unsolicited reply, where the implicit request ID must be set as 1.

For Server version 7.1 and above, the Proxy Adapter will always recognize the packet. How-
ever, the packet contents will be understood and considered depending on the Server version.

If Remote Adapter authentication is configured on the Proxy Adapter for a Remote Adapter,
the packet is mandatory and should be the first packet sent on all pertaining channels. If the
credentials are refused, the Proxy Adapter will ignore any other packet and will interrupt the
connection.
Otherwise, the packet is optional and can be sent to provide the Proxy Adapter with other
connection-related information.

With the old two-connections communication with Remote Data Adapters, this packet is han-
dled differently, and pertains to both the Data pure-replies channel and the Data notifications
channel. Moreover, when sent on a notifications channel, it takes the form of a normal notifica-
tion.

- 29 -

Otherwise, the packet should not be sent on the Data notifications channel. However, sending
it is tolerated and the packet is ignored. This allows for a “transitional” Remote Data Adapter
implementation, which keeps handling the pure-replies and notifications channels separately,
as needed for the old two-connections communication, then just merges the packet flows in a
single connection.

Data segments:
• N initialization parameter name-value pairs, both names and values as string;

all strings will be encoded with the Backward-Compatibility Encoding.

The supplied parameters are handled by the Proxy Adapter regardless of their order.
➢ For Server version 7.1 and above, parameters with names “user” and

“password” must be provided to specify the credentials, when needed.
➢ For Server version 7.2 and above, a parameter with name

“enableClosePacket” and value “true” on a replies channel will request the
Proxy Adapter to (try to) issue a CLOSE packet on the corresponding
requests channel in case of connection interruption for any reason.
Then, after a successful response to the MPI/DPI packet, the availability of
the CLOSE packet will depend only on the chosen protocol version.

➢ For Server version 7.4 and above, a parameter with name “SDK” is detected
and logged by the Server at INFO level. If leveraged, the recommended
value is “Generic Adapter SDK”, which may help log-based diagnostics.

As a reply:
1|RAC|S|<param 1>|S|<param 1 value>|...|S|<param N>|S|<param N value>

As a notification:
<timestamp>|RAC|S|<param 1>|S|<param 1 value>|...|S|<param N>|S|<param N value>

Examples:

As a reply:
 1|RAC|S|user|S|remote1|S|password|S|fdhjkslghak|S|enableClosePacket|S|true

As a notification:
 <timestamp>|RAC|S|user|S|remote1|S|password|S|fdhjkslghak

Keepalive
Direction: from counterpart to Proxy Adapter
Channels:

• Metadata Adapter replies channel
• Data Adapter replies channel

Method tag: KEEPALIVE

The packet has a special syntax, independent from the channel, as specified in the introduc-
tory notes.

With the old two-connections communication with Remote Data Adapters, this packet is han-
dled differently, and pertains to both the Data pure-replies channel and the Data notifications
channel, where it should be sent based on the own activity of each channel.

- 30 -

Otherwise, obviously, the keepalives should be sent based on the overall activity of the replies
channel. However, if a “transitional” Remote Data Adapter implementation keeps handling the
pure-replies and notifications channels separately, as needed for the old two-connections
communication, and just merges the packet flows in a single connection, there is no issue:
it will just send more keepalive packets than needed, but outages will be detected anyway.

Examples:

 KEEPALIVE

Close Notification
Direction: from Proxy Adapter to counterpart
Channels:

• Metadata Adapter requests channel
• Data Adapter requests channel

Method tag: CLOSE

The packet takes the form of a request with no possible reply, where the implicit request ID is
always set as 0.

Data segments:
• N closure parameter name-value pairs, both names and values as string;

all strings should be encoded with the Backward-Compatibility Encoding.

The parameters are supplied by the Proxy Adapter in an unspecified order.
A parameter named “reason” will always be supplied, to carry a text message
describing the reason for an ongoing connection interruption.
The syntax is predisposed for the introduction of other parameters in future versions
of the protocol.

0|CLOSE|S|<param 1>|S|<param 1 value>|...|S|reason|S|<close reason>|...|S|
<param N>|S|<param N value>

No reply is expected.

Note: this packet is sent by the Proxy Adapter upon an ordered closure of the connection. Ob-
viously, an abrupt closure of the connection, without this packet, is always possible.

Examples:

 0|CLOSE|S|reason|S|keepalive+timeout

1.8 Notes on Protocol Method Sequence

Metadata Init, Data Init

The proper Init method is the very first request sent from the Proxy Adapter to the counterpart.
In this way, the Proxy Adapter can send initialization parameters to the Remote Adapter

- 31 -

(based on its own configuration) before starting to issue requests. The Proxy Adapter won't
send any request until the Init method sends back a successful response.

Remote Adapter Credentials

The Remote Adapter Credentials packet is optional. However, the Proxy Adapter, depending
on its current configuration, may request this packet, to receive suitable identification informa-
tion, before accepting any other packet on the channel and before sending the proper Init
method on requests channels.
In any case, the packet is valid only if it is the first one sent on the channel.

Notify User

The Notify User method is invoked before any other requests for the same user (which version
is used depends on the configuration of <use_client_auth>; by default, the base version is
used). This means that the Metadata Adapter has always a chance to authenticate users be-
fore any detail about their profile is requested.

Notify User, Notify New Session

All the authorization request management is expected to depend on the user name only. Any-
way, some information on the specific client request instance are supplied to the Notify New
Session method, as the client context. The REQUEST_ID property is the same id that has just
been supplied to Notify User for the same client request instance; this allows for using local
authentication-related details for the authorization task.
Note: the Remote Metadata Adapter is responsible for disposing any cached information in
case Notify New Session is not issued because of any early error during request manage-
ment.

Notify New Tables, Notify Tables Close

These methods are requested by the Proxy Metadata Adapter only when the Remote Meta-
data Adapter asks for them through the wants table (i.e. subscription) notifications flag re-
turned with the Notify User method, on a user basis. If this flag is always returned as false,
then these calls are never received.

Notify New Tables, Notify New Session, Get Items, Get Schema, Get Item Data, Get User Item
Data

These methods are requested by the Proxy Metadata Adapter synchronously (i.e.: the re-
questing thread waits for the reply; however, the Proxy Metadata Adapter may still issue multi -
ple requests in parallel, as stated in the general notes). Moreover, the requesting threads are
taken from a limited pool.
This means that these requests should be processed as fast as possible; but, anyway, any
roundtrip delay related to the remote call will keep the Server waiting.
In order to avoid that delays on one session propagate to other sessions, the size of the
thread pool devoted to the management of the client requests should be properly set, through
the "server_pool_max_size" flag, in the Server configuration file.

- 32 -

Alternatively, a dedicated pool, properly sized, can be defined for the involved Adapter Set in
“adapters.xml”. An even more restricted dedicated pools can be defined for each Data Adapter
in the Adapter Set. The latter pool would also run any Metadata Adapter method related to the
items supplied by the specified Data Adapter.

Notify User, Notify User Message

These methods are requested by the Proxy Metadata Adapter asynchronously, hence there
are no threads waiting for the reply; however, there are still resources blocked within the
Server, hence the number of pending requests can be subject to a limit.
This means that these requests should still be processed as fast as possible, although the de-
lays on one session should not directly propagate to other sessions.
The set of pending invocations is handled by a special type of “thread pool”, named in this way
to keep a uniform view across all methods. Precisely, there are two dedicated pools, the au-
thentication pool and the messages pool, for each Adapter Set, which can be configured in
“adapters.xml”.

Notify New Tables, Notify Tables Close

If desired, invocations of these methods, when related to the same session, can be performed
by the Server sequentially. This can be achieved by leveraging the <sequentialize_table_noti -
fications> flag available in the Proxy Metadata Adapter configuration. Obviously, this would
mean that any delay or roundtrip time involved may keep further subscription requests for the
same session blocked. Obviously, when the two methods refer to the same subscription, they
are always invoked sequentially.

Notify Tables Close, Notify Session Close, Subscribe, Unsubscribe

These methods are requested by the Proxy Metadata Adapter side asynchronously (i.e.: with-
out waiting for the reply). This does not mean that the reply should not be sent: the reply is
mandatory (or a timeout exception will be raised on the Proxy Metadata Adapter side), but any
exception that it should carry would simply be logged. Anyway, this means that these methods
don't need to be non-blocking, as long as they don't last more than the configured timeout
limit.

Notify New Session, Notify Session Close

These methods are invoked consistently. Notify New Session always precedes other methods
related with the same session and Notify Session Close always follows other methods related
with the same session.
To be more precise, after Notify Session Close, no more calls to Notify New Tables and
Notify Tables Close for this session ID are possible. On the other hand, trailing invocations of
methods related with the validation of client requests, like Get Items, are still possible and ac-
cepting them would have no effect. However, if the method may have side-effects on the
Adapter, like Notify User Message, the Adapter is responsible for checking if the session is still
valid.

Subscribe, Unsubscribe

- 33 -

These methods are invoked consistently. Subscribe always precedes Unsubscribe for the
same item; after Unsubscribe, a further Subscribe is possible, and so on. However, since the
Proxy Data Adapter doesn’t wait for the answer to Subscribe or Unsubscribe before issuing
the next invocation, if needed, then it is possible that multiple Subscribe-Unsubscribe requests
are pending at the same time.

Subscribe, End Of Snapshot, Update By Map

Upon a successful Subscribe, the Remote Data Adapter is always due to provide the Proxy
Data Adapter with snapshot information. This is done by sending Update By Map notifies with
the “is snapshot” flag set to true and a terminating End Of Snapshot notification. This should
be done as soon as possible and must precede any real-time updates carried by Update By
Map. In case no snapshot information is available, an empty snapshot should be sent.

Subscribe, End Of Snapshot, Update By Map

Since the Proxy Data Adapter doesn’t wait for the answer to Subscribe, it is not mandatory
that the End Of Snapshot notification and even Update By Map and other notifications related
with a successful subscription are sent after the reply to Subscribe. They may even precede
an unsuccessful reply to Subscribe, as the subscription issue will just be logged by the Proxy
Adapter but will not impact on the data flow.
By the way, this lack of an ordering constraint allows for a “transitional” Remote Data Adapter
implementation, which keeps handling the pure-replies and notifications channels separately,
as needed for the old two-connections communication, then just merges the packet flows in a
single connection.

Declare Field Diff Order, Update By Map

The Declare Field Diff Order messages can be sent at any point in which Update By Map can
be sent and can be sent multiple times, although usually it should be sent (if at all needed)
only once, before the first use of Update By Map.
Hence the “diff” order of a field can be specified multiple times, but it cannot be changed dur-
ing the life of the subscription. Note that if a field is used in Update By Map and it was never
included before in Declare Field Diff Order, this implicitly accepts the Server default behavior,
which also cannot be changed for the remaining life of the subscription.

End Of Snapshot, Update By Map, Clear Snapshot

As said above, the optional initial snapshot and the terminating End Of Snapshot notification
should be sent first thing. Actually, the End Of Snapshot notification can be omitted and in that
case the subsequent Update By Map with the “is snapshot” flag set to false will imply snapshot
termination. But note that this would be equivalent only if the Update By Map came immedi-
ately; otherwise, the Server would, pointlessly, keep waiting for more snapshot to come.
Similarly, a Clear Snapshot notification should only occur after snapshot termination; other-
wise, it would imply snapshot termination as well.

Keepalive

- 34 -

Keepalive packets can be sent on any channel at any moment. The Proxy Adapter may be
configured to close the connections after an inactivity period. Sending a Keepalive packet
when no other activity is in place will prevent this.

Close Notification

A Close Notification packet can be sent by the Proxy Adapter as the last one before connec-
tion interruption. The presence of this packet adds no guarantee that the latest responses sent
by the Remote Adapter have been processed by the Proxy Adapter.
The Close Notification packet is enabled on the Proxy Adapter after receiving the response to
the Init packet, which establishes the protocol version. Before that, it can be enabled through
the Remote Adapter Credentials packet.

- 35 -

	1 The ARI Protocol
	1.1 Architecture
	1.2 Protocol Basics
	1.3 Packet Structure
	1.4 Data Types and Encodings
	1.5 Metadata Provider Protocol Packets
	1.6 Data Provider Protocol Packets
	1.7 Common Packets
	1.8 Notes on Protocol Method Sequence

