

 2

Last revised: June 5, 2006

Copyright (c) 2004-2006, Weswit srl. All Rights Reserved.
Lightstreamer is a registered trademark of Weswit Srl.
All other trademarks are the property of their respective holders.

 3

Index

Introduction... 4
1. What is Push Technology? ... 5

The history of Push Technology.. 5
Push architectures ... 6
Push applications... 7
Why is a third generation of push technology needed? 8

2. Lightstreamer: the revolution of push technology 10
True streaming/push in pure HTML .. 10
How true streaming/push works in HTML... 11
Lightstreamer and AJAX.. 12
Lightstreamer and Jabber/XMPP .. 14
The architecture of Lightstreamer Server ... 15
Bandwidth control... 16
Adaptive streaming .. 18
HTTP(S) connections... 19
Clustering ... 20
A high performance server .. 20
Lightstreamer administration ... 21

3. Potential uses of Lightstreamer .. 22
Heterogeneous clients ... 22

Web browsers.. 22
Desktop applications... 23
Microsoft Excel .. 24
Java Midlets... 24
Opera browsers for smartphones & PDAs................................. 25

Heterogeneous channels... 25
Types of applications ... 25

Financial information... 26
News .. 26
Monitoring consoles .. 26
Online betting .. 27
Online games, gambling ... 27
Online auctions.. 27
Sports portals .. 27
Chat Systems, Instant Messengers, Online Communities, Social
Networks.. 27
Website access statistics.. 28
Web-Mail systems... 28
Transport websites.. 28
Public utility services... 29
Availability of materials – ticket offices – tourism 29
Opinion polls.. 29
Other applications ... 29

User "permanence" on a website.. 29
4. What Lightstreamer is offering.. 31

How to integrate Lightstreamer into an IT system............................ 31
Contacts.. 33

 4

Introduction

This white paper provides a history of push technology, putting
Lightstreamer into context and explaining its particular features and
potential uses.

The white paper can be consulted by various kinds of readers. It should be
borne in mind, however, that sections 1, 2 and 4 are more about the
technology, while section 3 discusses applications.

 5

1. What is Push Technology?

The term “Push Technology” was coined in 1996 and immediately became
an Internet buzz word. In fact, over time this term has been used to
indicate various technological solutions, all of them geared - to a greater or
lesser degree and more or less effectively - to reverse the classic web
model. The classic model (known as pull) has the client (browser) solicit
data from the server in a synchronous manner. This means that every time
the client needs a data update, it has to ask the server expressly to find out
if the data has changed and to obtain the new value.
The push model, on the other hand, has the client receive updates in an
asynchronous manner at the server's discretion, generally after expressing
interest in a certain type of information. In other words, the client becomes
a passive part of the system, receiving updated information as soon as it is
available on the server, without having to ask for it every so often. In this
sense, e-mail can be considered the oldest and most widespread form of
push technology on the Internet.
According to British linguist Michael Quinion1, the term may derive from the
phrase "push polling" much used by the media during the 1996 US
presidential election, which referred to a devious electioneering technique
in which canvassers pretended to be conducting a telephone opinion poll,
but then used the call to push their candidate’s virtues....
Synonyms that have been used over the years for push technology
include: webcasting, narrowcasting, channeling and streaming.

The history of Push Technology

Basically, it is possible to identify three generations of Push Technology.

First generation: this was born in 1996 and by 1998 it had almost
completely disappeared.
The spring of 1996 saw the launch of PointCast, the first push system (in
the accepted meaning of the "channels", as explained below). Soon after,
at least thirty or more players entered this market niche, including Microsoft
and Netscape. IT market analysts expected push technology to become a
killer application and that in future it would be the main way of offering
information online. This forecast did not come about, not by a long chalk,
for the reasons that we shall see. A similar course of events (lots of
enthusiasm at the beginning followed by a gradual slide into oblivion) was
visible soon after (1998-2000) for another hypothetical killer application:
Intelligent Agents...

Second generation: this established itself around the year 2000, but
remained extremely fragmented, while also still being immature from a
technological point of view.
A small part of the second generation solutions were attempts to launch
revamped versions of first generation products with a few technological

1 http://www.quinion.com/words/turnsofphrase/tp-pus1.htm

http://www.quinion.com/words/turnsofphrase/tp-pus1.htm

 6

improvements. In any case, this was the stage that marked the most
tangible sign of the first generation's demise, namely the closure of
PointCast (in 2000).
Most second generation push products were developed thanks to the
success of online security trading systems, which originated in 1997 and
became diffuse world-wide from 2000 onwards. As a result, customized
solutions designed to send clients real time stock market information and
press agency news flashes became more and more frequent. These
solutions not only failed to be consolidated in widely used products, far less
in de facto standards, but also left various technology problems
unresolved.

Third generation: this was inaugurated in 2003 with the official launch of
Lightstreamer, conceived and engineered from 2001 onwards.
The fundamental characteristic of third generation push technology
(heavily oriented towards so-called streaming push) is the definitive
resolution of all the technology problems that had been left unresolved by
the previous generations, with the introduction of features such as
bandwidth and frequency control, the absence of external components to
be integrated into front-end web pages and simpler integration with pre-
existing sites.
Being based on a solid technological platform, the third generation at long
last makes it possible to shift the focus from the technology's problems to
how the technology can be applied.

Push architectures

It is possible to distinguish four macro-types of push architecture, which
differ in the way that they transfer information from the server to the client.
But first we have to distinguish between two separate stages in the push
model: notification and delivery.
By notification we mean a message sent by the server to inform the client
that new information is available (in other words, that certain aspects of the
site's content have been updated).
By delivery, on the other hand, we mean that the new content has actually
been transferred from the server to the client.
The four types of push technology are summarized in the following table:

1. Polling
 Notification: none Delivery: synchronous (pull in polling)

2. Manual smart pull
 Notification: asynchronous Delivery: synchronous (manual pull)

3. Automatic smart pull
 Notification: asynchronous Delivery: synchronous (automatic pull)

4. True push / streaming
 Notification: none Delivery: asynchronous

 7

In the case of polling, we talk about “simulated push”. There is no
notification of updates so the client has to ask the server periodically for
information to see if any of it has been changed. This technique not only
consumes a great deal more bandwidth during the connection, but also
fails to ensure that the data is received in real time; nor is it able to support
medium/high update frequencies.

Smart pull consists of the server sending just a notification of updates on
an asynchronous basis. It is then up to the client to ask for the new
information from the server on an asynchronous basis (i.e. pull). Uploading
the new data can be automatic (the client requests the update as soon as
notification arrives) or manual (the user decides to ask for the new data
some time after having received notification). The following is an example
of manual smart pull. The user receives a newsletter via e-mail containing
links to web pages with the new information that has just been published;
the user clicks on a link and opens a browser window where the contents
can be uploaded. Notification of the content updates is therefore
asynchronous (by e-mail), while delivery is synchronous (by pulling a web
page). Another example of manual smart pull are those Instant
Messengers which notify in an asynchronous way the presence of new e-
mail in your inbox; it is then up to the user to connect to the web mail page
to pull down the messages.

Smart pull has a lower impact on bandwidth consumption compared with
polling, but again this technique does not allow you to send information in
real time.

True push, also known as streaming push or more simply streaming, does
not use a preliminary notification phase, but has the server send off an
update directly to the client on an asynchronous basis as soon as the new
information is available. This is the only method that achieves a full level of
real-time communication. In fact, the server sends off a continuous flow of
updates to the client computer, making them immediately visible to the
user.

The first generation of push was based prevalently on polling and smart
pull. The second generation was largely based on polling and to a lesser
extent on true push. The third generation, on the other hand, uses
exclusively true push.

Push applications

There are various kinds of push applications related to the generations of
push technology and the various types of architecture described above.
The main ones are as follows:

Channels: This is an application that is strongly linked to the first
generation of push technology. The user registers with some "information
channels" and then receives their contents, which are visualized by

 8

dedicated client terminals, browsers or by special screen savers. The
system is based on polling or on smart pull.

Offline browsing: the user indicates which sites they are interested in and
the system periodically synchronizes a local cache in the user's PC,
making it possible to surf these sites offline. The system is based on
polling.

Multimedia streaming: this can be considered a form of push. The user
receives a stream of audio and video data, which special software decodes
and plays in real time.

Text streaming: The page visualized by the user's browser does not get
reloaded, but the data contained in it gets updated in real time (the
granularity of the updates is that of the individual "cell").

Generally speaking, the greater the volume of content being updated (i.e.
the less fine the granularity of the updates), the lower the frequency of the
updates (i.e. the system's level of real time) and vice versa.

For example, systems based on channels have as the granularity of their
updates a whole web page, or even a series of pages, with updates being
made approximately once a day. Text streaming systems, on the other
hand, have an update granularity which is that of an individual cell on the
page being visualized, so the frequency of updates can be higher than one
a second.

Why is a third generation of push technology
needed?

Various analyses have been made into the reasons for the sudden demise
of push technology's first generation. To a certain extent, the reasons were
technological. To start with, early push systems not only saturated the
bandwidth of the individual user's Internet connection, but also caused
bottlenecks in Internet providers' backbones... Moreover, users did not
appreciate the fact that they had to install special software on their PCs.
But the main reason for its demise was probably application-related. There
has never been a real need to get to the office in the morning and find your
desktop full of new web pages, already downloaded, which you are never
going to have time to read. Someone likened the first generation of push
technology to immense piles of newspapers being left on your doorstep in
the morning...

Size of updated content
(or “granularity of the updates”)

Update frequency
(or “level of real time”)

 9

But if the first generation failed, the second still isn't widely used,
consolidated or standardized. In this case, the problems were prevalently
technological (indeed they still are, considering that the installed base of
second generation push systems is still a good deal higher than those of
the third generation). Apart from the fact that many still use simulated push
instead of true push, the main problems are of the following type. There
are cases in which push updates are unable to get through network
structures containing proxies, firewalls and NAT systems. In addition, the
Internet connection bandwidth of the user's PC still risks being saturated
without warning. What happens then is that the user cannot perform other
tasks online (such as consult the mail or surf other websites) while a push
session is in progress. However, the user's surfing may be blocked not
only by the modem's bandwidth being saturated, but also by the push
system exhausting the pool of browser connections. Indeed, in most
second generation push systems, each pop-up window or frame showing
push data uses up one browser connection, and browser connections are
a limited resource. Generally speaking, once four connections are being
used simultaneously, browsers get blocked (i.e. they refuse to open other
connections) until at least one of them gets freed up.
Normally, second generation systems are unable to handle Internet
congestions very well. This means that if for a few seconds the quality of
the connection between the client and the server deteriorates, the push
server continues to generate information at the same rate, with the result
that the client then receives a mass of old data.
But the most obvious problem of second generation push technology is
without a doubt the fact that a Java applet, an ActiveX control or a plug-in
always has to be downloaded to the user's browser, with the
consequences that we will discuss later on.

 10

2. Lightstreamer: the revolution of push
technology

The Lightstreamer solution was launched early in 2003 (whilst the
inception of this project dates back to 2000), having achieved all of the
objectives to overcome the technological limitations of second generation
streaming/push systems.

True streaming/push in pure HTML

Lightstreamer is able to update the information shown on an HTML page
without having to reload it, and above all, without having to add anything
"extraneous", such as a Java applets or plug-ins of any kind. Lightstreamer
makes it possibile to develop live Rich Internet Applications (RIA) in
pure HTML/JavaScript without using Java or Flash.

This type of solution has all sorts of advantages:
§ Immediate start. There is no need to wait for a download or for the

initialization of an applet or an ActiveX control. Page updates are
immediate, without any initial latency.

§ No issues with the Java virtual machine (JVM). The lack of applets
in Lightstreamer means that there are no compatibility problems with
the Java virtual machine in the user's browser. In fact, there is
longstanding litigation between Microsoft and Sun Microsystems
regarding the presence or otherwise of a JVM in Internet Explorer. So
there are numerous versions of JVMs and in certain cases (the latest
versions of Windows operating systems), there could be no JVM at all.
Lightstreamer avoids these problems totally, because it does not use
or require Java on the client side.

§ No security risk. The presence of an external element on a page,
however much it is digitally signed and guaranteed as secure, still
leaves room for possible security gaps in the system. Lightstreamer's
front-end does not introduce any variance in the level of security
compared with that already adopted for a normal pull-type web page.

§ Layout homogeneity and ease of maintenance. Another huge
problem relating to the presence of external elements on the page is
the fact that they do not visualize data in HTML, but use proprietary
technologies. For example, the use of an applet to visualize data on a
push basis forces the applet's developer to simulate the HTML layout
of the page containing the applet, using primitives or Java's graphic
libraries. This is already a complex and costly exercise in itself. If then
the layout of the site were to be personalized by the user (different
color schemes, etc) or in any case subject to maintenance, the source
code of the applet would have to be adjusted to redesign the front-end
to make it compatible with the pages of the website. In fact the site's
style sheets are not applicable to external elements. The applet
problem is identical with ActiveX controls and plug-ins. Lightstreamer,
on the other hand, visualizes push data directly in HTML. Maintenance
of the push pages is therefore identical to that of the pull pages, which

 11

means that it does not need programming skills nor the time and cost
of a programmer.

How true streaming/push works in HTML

Lightstreamer updates the information on an HTML page by means of a
suitable combination of JavaScript, DHTML, CSS and DOM technologies.
The most appropriate technologies have been chosen case by case to
provide total compatibility with different browsers and to guarantee the best
possible performance in any situation. Lightstreamer's push update system
therefore functions with Microsoft Internet Explorer v.4 onwards, Netscape
v.4 onwards, with all variants of Mozilla and Firefox, with Opera, Safari and
many other less diffuse browsers2.

The site's push pages get updated by means of JavaScript streaming
techniques. This involves solutions that found some space in IT sector
literature around the year 2000, but they were never widely used because
of a series of technological problems that were never completely resolved
in an organic way. Lightstreamer has brought the management of
JavaScript streaming to a level that is state-of-the-art, giving it a degree of
reliability and robustness that is at long last suitable for production and
mission critical applications.

Only the data that has effectively been changed gets updated on the HTML
page. Any change in a figure is accompanied by a graphic effect that can
be personalized by the integrator; usually this means temporarily lighting
up the cell containing the new data.

2 Please see www.lightstreamer.com/compatibility.htm for an up-to-date list of compatible
browsers.

http://www.lightstreamer.com/compatibility.htm

 12

The high quality of these visualization techniques, together with
Lightstreamer's other features which we will discuss later on, means that
push technology is at long last a real, simple and complete experience,
within the reach of almost any web site. In fact, visualizing a push page is
now identical to visualizing a normal pull page. It is as though a whole new
dimension had been added to the experience of web surfing. Imagine
an HTML page that loads itself and immediately starts updating its own
content "live", without any prerequisite on the part of the system.
To see some online live demos of Lightstreamer technology, just go to the
site www.lightstreamer.com and click on the DEMOS menu. You will see
how with Lightstreamer it is even possible to plot real-time graphic
charts with pure HTML/JavaScript.

As explained later on, Lightstreamer is also the ideal solution to feed
information to traditional application clients on a push basis (written in any
programming language: Java, C++, C#, Visual Basic, Flash, etc.).

Lightstreamer and AJAX

AJAX or Asynchronous JavaScript and XML is a term describing a web
development technique for creating interactive web applications using a
combination of HTML (or XHTML), CSS, DOM, XML, XSLT and the
XMLHttpRequest object. With respect to traditional web applications, AJAX
applications can send requests to the web server to retrieve only the data
that is needed instead of a full HTML page, usually using SOAP or some
other XML-based web services dialect, and using JavaScript in the client to
process the web server response. This results in more responsive
applications, because of the reduction in the amount of data interchanged
between the web browser and web server to display an up-to-date page.

“Classic” AJAX, when used to update the data displayed in a page, is a
polling technique (see “Push architectures” on page 6). It does not
support streaming and needs to periodically make an enquiry to the server
both to know if fresh data is available and then to retrieve it. The following
table highlights the differences between four paradigms. The columns refer
to the methods of sending data with respect to the user’s and the browser’s
actions. Synchronous with respect to the user’s actions means that to
update the displayed data the user must take some action or (if automatic
reload is used) the user actions are blocked during the update.
Synchronous with respect to the browser’s actions means that even if a
user’s action is not required, under the hood the JavaScript code running
inside the browser has to issue a request to the server and wait for a
response for each update.

http://www.lightstreamer.com

 13

Application Paradigm
Method of sending
data with respect to
user’s actions

Method of sending
data with respect to
browser’s actions

Traditional Web
Application
--> Page Refresh

Synchronous Synchronous

Classic AJAX Application
--> Periodic Polling Asynchronous Synchronous

Smart AJAX Application
and Lightstreamer
Application
--> Smart Polling
--> Asynchronous Polling
--> Long Poll3

Asynchronous Partially
Asynchronous

Lightstreamer Application
--> Streaming AJAX
--> True Push/Streaming
--> Forever Frame3

Asynchronous Asynchronous

Classic AJAX applications can update the data displayed in a page without
the user having to explicitly request it (the data delivery is asynchronous
with respect to the user). But the AJAX engine has to retrieve the data from
the server in a synchronous fashion. The asynchronous-polling paradigm
is based on a polling cycle with a variable period. Instead of polling the
server at predefined times, the client sends a request to the server. It’s
then up to the server to keep the request pending until fresh data is
available, before sending the response. As soon as the client receives the
response, it sends a new request. This implies that the polling timing is
mainly governed by the server and by the network latency; in this sense it
can be defined as “partially asynchronous” with respect to the browser’s
actions. On the other hand, Lightstreamer applications are fully
asynchronous, because when new data is available, it is pushed by the
server to the client. For this reason, Lightstreamer’s paradigm could be
defined as streaming AJAX. The major advantages of a full asynchronous
approach based on streaming/push are:

§ Zero latency between the generation of new data and the delivery to

the final clients. No need to wait for the next polling cycle to receive
fresh data. The asynchronous polling paradigm shares this same
benefit, but since a full round trip of request/response is needed for
each update, the asynchronous polling mechanism is limited in the
maximum frequency allowed for the updates (depending on the

3 In March 2006, Alex Russell coined the term Comet to refer to AJAX systems that are
able to push data to the client (see http://alex.dojotoolkit.org/?p=545 and
http://alex.dojotoolkit.org/?p=547). So Lightstreamer can be defined as a “Comet Server”.
Comet uses the terms “Long Poll” and “Forever Frame” to refers to these two techniques.

http://alex.dojotoolkit.org/?p=545
http://alex.dojotoolkit.org/?p=547

 14

network latency). The true/push streaming paradigm allows the highest
frequencies for data updates.

§ Reduced bandwidth. With the true push/streaming paradigm, a
permanent streaming connection is kept open for each client. When no
fresh data is available, no useless traffic is generated on the
connection. Furthermore, the heavy HTTP headers of the round-trip
cycles (request/response) of the asynchronous polling are completely
avoided.

§ Very low load on the infrastructure. An approach based on polling
(whether periodic or asynchronous) needs to generate numerous
request/response cycles which impact on the resources of the
underlying infrastructure, in particular: the client machine running the
browser, the proxy server, the firewall and server itself. On the
contrary, the permanent HTTP streaming connection used by the true
push/streaming paradigm is efficiently managed by infrastructure,
provided that the server is optimized for sustaining a high number of
concurrent connections (as Lightstreamer Server).

The push/streaming paradigm is certainly the best one to distribute real-
time data. However there exists some antivirus software installed on proxy
servers that blocks any form of streaming. What happens is that this type
of proxy/antivirus fully inspects each Web resource received from the
server before sending it to the browser, instead of forwarding it to the client
in real time as normal proxies do. In this case no form of streaming is
possible (even if the streaming system is based on applets or thick desktop
applications). The StreamSense feature of Lightstreamer automatically
detects these situations and transparently switches to the Smart Polling
mode. But even in the polling mode, Lightstreamer keeps the unique ability
to manage bandwidth, frequency and data filtering.

Lightstreamer and Jabber/XMPP

The term Jabber is widely used to refer to a set of open protocols for
streaming XML elements between any two points on a network, and to the
technologies built using those protocols. The Extensible Messaging and
Presence Protocol (XMPP) is the IETF's formalization of the base XML
streaming protocols for instant messaging and presence developed within
the Jabber community. XMPP is usually implemented via a client-server
architecture wherein a client utilizing XMPP accesses a server over a TCP
connection on port 5222. In addition to the base protocols, there exist
several extensions specified in the “JEP” series, including two methods for
using HTTP connections instead of plain TCP sockets: HTTP-Polling
(JEP-0025) and HTTP-Binding (JEP-0124). Anyway, none of these
extensions support asynchronous streaming, since they are based on
periodic requests from the client to poll the server for incoming “stanzas”
(i.e. XML discrete semantic units of structured information). This implies
that Jabber/XMPP with its standard extensions is not able to stream data
with zero latency to pure HTML/JavaScript clients.

 15

Lightstreamer can be used as a gateway for Jabber/XMPP servers to
implement a real streaming mechanisms for thin clients based on HTTP,
with three main advantages:
§ Pure HTML/JavaScript clients for Jabber can be developed, without

using applets, plug-ins or Flash components.
§ Real streaming is made available on very common network

infrastructures, without reconfiguring firewalls or proxies.
§ Bandwidth usage is optimized due to the efficient network protocol

of Lightstreamer that is not based on verbose XML.

To use Lightstreamer as a gateway for Jabber/XMPP servers it is enough
to develop a XMPP Data Adapter for Lightstreamer.

The architecture of Lightstreamer Server

Lightstreamer Server can be installed as a cluster. Each cluster node
consists of a Java process, which includes three modules:

§ The Kernel of Lightstreamer Server: This is the real engine of the

push system as it maintains the HTTP/HTTPS connections with the
clients and distributes the data, filtering it on the basis of the allocated
bandwidth and frequency. Lightstreamer Server is a stand-alone
process, which does not rely on any web server, servlet container or
application server. This approach was taken in order to have direct
control over the operating system's TCP/IP stack and to optimize the
data transmission as much as possible. The Kernel of Lightstreamer
Server has the task to distribute the data to the clients in a very reliable
and efficient way, offering unique features like Bandwidth & Frequency
Control and Adaptive Streaming.

§ The Data Adapter: This is a plug-in module which interfaces
Lightstreamer with the data source (or "feed") to be integrated. The
Data Adapter receives a flow of data from the back-end systems
(information provider, data feed, database, etc.) and makes it available
to Lightstreamer Server for controlled delivery to individual users. The
Data Adapter can use any technology to integrate itself with the data
feed. However, it is preferable to use middleware equipped with
asynchronous paradigms, such as message-oriented systems (JMS,
RendezVous, MQ), so as not to break the asynchronous chain that
goes from the feed to the user's browser. In any case, it is also
possible to use polling techniques to refresh the data (e.g. reading
from file or from database).

§ The Metadata Adapter: This is a plug-in module which provides
Lightstreamer Server with the metadata of the push sessions. In
particular, given that Lightstreamer Server interfaces directly with the
Internet, it has to be able to authenticate users. The Kernel therefore
uses the Metadata Adapter to validate the credentials received. This
Adapter also manages the description of the information categories
handled, the push message schema, user bandwidth and frequency
policies and any kind of information that does not consist of real push
data, but data of a higher level (i.e. metadata).

 16

The architecture of Lightstreamer makes it possible to handle an arbitrary
number of different Data Adapters and Metadata Adapters. In this way it is
possible to integrate heterogeneous sources of information while
maintaining a single point of access to the streaming/push channel.

Bandwidth control

For each user, Lightstreamer makes it possibile to allocate a maximum
bandwidth that is dedicated to the streaming channel. For example, if it is
required that a certain user cannot exceed a bandwidth of 10 kbps,
Lightstreamer will filter the data in such a way as to ensure that the
streaming connection with that user always remains below 10 kbps..
The system is also able to allocate a maximum update frequency for each
user/item combination. For example, it is possible to configure the profile of
a certain user so that they do not receive more than 2 updates per second
for a certain subscribed item (i.e. a piece of data, such as the price of Sun
Microsystems stock).

Filtering the data makes sense not only to limit the bandwidth occupied by
the streaming connection, but also to improve the quality of data usage on
the part of the end user. The human interface can absorb data by a
combination of the human eye and brain, which are incapable of perceiving
data changes of more than a few updates per second. Sending 30 updates
a second would be a waste of bandwidth and computing resources, as
they could never be taken in by a human user. However, Lightstreamer
can also feed automated (as opposed to human) processes. In this case, it
is possible to bypass the filtering mechanisms.

Filtering data is a possibility offered by the intrinsic nature of many kinds of
information. All information sources that over time generate updated
versions of the same data, more or less frequently, can quite easily be
subjected to filtering algorithms.

Examples of filterable data feeds:
§ Stock exchange prices. The price of a stock ("last price") varies

continuously during the course of a stock market session. Once the
market has generated a new price, the old one automatically becomes
obsolete. So in the case where prices are generated with a very high
frequency, one could decide not to communicate each and every
variation. It is obviously indispensable to maintain the consistency of
the data presented on a page, despite the filtering. For example, if on
the same page there is the price of a covered warrant whose price
gets updated once every hour, together with the price of a stock listed
on the NASDAQ, which generates 20 updates a second, it is obviously

 17

unthinkable to lose the one update of the first in order to communicate
more updates of the second. Lightstreamer's powerful heuristic
mechanisms ensure that whenever one takes a "snapshot" of a page,
all of the data on it are absolutely coherent and consistent.

§ Measurements by a probe. A probe of any sort (e.g. a physical probe
to measure temperature or a software probe for network management)
produces a whole series of measurements which are samples of the
quantity that the probe is designed to monitor. These samples can be
subsequently re-sampled to reduce their frequency even further.

Lightstreamer manages the filterable data feeds by means of a
subscription method called MERGE.

However, there are data feeds that should not be filtered. These are feeds
that do not produce data that replaces the previous data, but which
produce data that is displayed alongside the previous data. A typical
example of this kind of data feed is:
§ News headlines. Press agencies generate fresh news items

throughout the day. Typically, a real-time news visualization system
shows a series of headlines in chronological order (from the latest to
the oldest) which runs on receipt of each new headline. So when a
new item of news is received, it does not eliminate the previous one; it
gets listed alongside it.

Lightstreamer manages the non-filterable data feeds by means of a
subscription mode called DISTINCT. In this case, Lightstreamer delivers
each single update. Any bursts in the generation of new updates get
absorbed by spreading out their dispatch to clients over time, within certain
limits.

In addition to the MERGE and DISTINCT modes, Lightstreamer also offers
another two modes of subscribing push data:
§ RAW. The flow of information received from the data feed is sent 'as is'

to the clients, complying solely with the bandwidth restrictions. It is a
suitable method for Lightstreamer to feed automatic processes that
require all of the updates (e.g. a system for recording the history of a
series of figures in a data base).

§ COMMAND. This makes it possible to handle the so-called “meta-
push”. There are data feeds that deliver two or more levels of updates.
For example, the classic list of today's 10 best shares on the Stock
Exchange gets updated in real time at two levels: at any moment in
time, the composition of the list can change (i.e. which shares are
included), as can the details of each item on the list (individual share
prices). Lightstreamer's COMMAND mode makes it possible to
manage meta-push easily and efficiently. Also in COMMAND mode it
is possible to carry out automatic server side compensation to reduce
the number of updates being sent. Going back to our previous
example of the 10 best shares, if within the space of a tenth of a
second a share entered and then exited the list, the server could
decide not to send customers either of the two updates, in order to
save on bandwidth. These sophisticated mechanisms can be

 18

controlled by means of a whole series of parameters, which make
them suitable for all kinds of filtering needs. For live examples of
COMMAND subscription mode, please see the Portfolio and Paged
Portfolio online demos on www.lightstreamer.com web site.

The advantages of bandwidth control are obvious, both for the server
and for the client:

§ For the server, bandwidth control makes it possible to size the

Internet connection required simply and accurately. If each user is
allocated 5 kbps and maximum usage at any one time is expected to
be 1000 simultaneous push users, then the maximum connectivity that
is needed at peak times is 5 Mbps. Without bandwidth control, it
becomes very difficult to predict how much connectivity is needed, with
the risk of saturating the network and causing other services to
malfunction as well.

§ For the client, bandwidth control makes it possible to avoid saturating
the bandwidth of the user's modem. Traditional push connections
through narrow band equipment (e.g. analog modems or GSM/GPRS
mobile networks) risk rapidly saturating the available bandwidth and
blocking the user's access to other services. With Lightstreamer, 4
kbps can be allocated to the push channel on a GSM mobile phone,
leaving about another 5 kbps free to access other Internet services. In
other words, bandwidth control allows partitioning of the client's
bandwidth among various applications.

Adaptive streaming

Internet connections are often unable to offer a guaranteed bandwidth.
This means that the ability to allocate a maximum bandwidth to each user
may not be sufficient to ensure that the push connection is managed in the
best way possible. The system has to be able to take into account exactly
how much bandwidth is available at any moment in time.
The sudden bandwidth bottlenecks that take place every so often on the
Internet may be due to congestions on intermediate links of the network,
which cause TCP packets to be lost and subsequently retransmitted (the
reliability mechanisms of TCP protocol ensure that any packet that does
not reach its destination gets sent another time). Lightstreamer
automatically spots situations of congestion on the Internet, heuristically
slowing down or suspending the dispatch of data until the connection is
fully available again. This means that if at any time the bandwidth actually
available is less than what was allocated and required, Lightstreamer uses
its own filtering mechanisms to modulate the sending of data with a more
suitable bandwidth. The advantage of this is that when the channel
becomes available again, the user does not receive a burst of obsolete
updates, but starts seeing the new data immediately (in other words, so-
called "data aging" is avoided). If the server continued to produce new data
without it being able to reach the client in real time, it would create a
tailback of events that would get longer and longer. And this could not only

http://www.lightstreamer.com

 19

lead to saturation of the system, but would also considerably reduce the
level of real-time information received by the user.

The advantage of adaptive streaming can be seen particularly well on
connections that are notoriously unstable and variable, such as those on
the GPRS network. Let's assume that the user starts a push session on
their GPRS smartphone (using one of the many mobile clients made for
Lightstreamer). If at a certain point the GPRS signal deteriorates and the
effective bandwidth narrows, or network coverage gets interrupted for a
short period of time, Lightstreamer Server understands what is happening
and adapts the streaming in a dynamic way to the new network conditions,
even going so far as to suspend the sending of data in the event that no
bandwidth is available at all. As soon as the connection quality improves,
Lightstreamer Server starts sending out new push data again without
recovering the history of data that at this stage is obsolete (of course only
in MERGE mode while always maintaining the underlying consistency of
the client's status).

Lightstreamer also has direct control over the composition of the TCP
packets. Instead of delegating the aggregation of data in packets to the
operating system using the Nagle algorithm, Lightstreamer Server itself
decides on each occasion the optimum composition of each TCP packet,
with the objective/trade-off of reducing the waiting time before data is sent
off and at the same time minimizing the number of packets dispatched. In
this way it is possible to improve the reliability of the bandwidth control
mechanisms, increase the system's real-time operating capacity and
improve the overall efficiency of data transmission.

Lightstreamer's bandwidth control and adaptive streaming make it possible
to obtain quality push sessions with less than 5 Kbps.

HTTP(S) connections

Each Lightstreamer client typically opens a single permanent connection
with Lightstreamer Server, on which the push updates relating to an
arbitrary number of items, frames and windows travel by means of
multiplexing techniques. The approach has various advantages:
§ The system's response time is better as subscriptions of new data

trigger off the immediate dispatch of the updates on a connection that
has already been set up.

§ The reduction in the number of connections that are needed ties up
fewer system resources both on the client's side and on the server's.

§ In the case where the client is a web browser, it is of fundamental
importance to minimize the number of connections being used.
Normally, browsers establish a maximum number of simultaneous
connections that are allocated in a pool. If the push system uses more

 20

than one permanent connection, there is a risk that the user's surfing
on this and other sites will be completely blocked.4.

Lightstreamer uses exclusively standard HTTP or HTTPS connections to
feed data to its clients. This makes it possible to go through any kind of
proxy or firewall placed between the client and the server, without any
sort of reconfiguration. If the user is able to visualize a normal website,
they will undoubtedly be able to use a push site fed by Lightstreamer.

Lightstreamer Server uses point-to-point connections with its own clients.
On the other hand, it does not use IP multicasting systems (which are
certainly more appropriate for audio and video streaming) as these do not
permit dynamic modulation of the bandwidth user by user. IP multicasting
systems also have little support outside local networks and through
common Internet providers.

Clustering

Lightstreamer Server is completely scalable. It is possible to create a
cluster using normal web load balancing appliances. In this way,
whenever there is an increase in the number of users, it is sufficient to add
machines to the cluster to scale the system in a transparent manner,
without interruption.
Clustering also makes it possible to handle fail-over. If one of the
machines in the cluster breaks down, the streaming connections set up
with certain clients get interrupted and these clients immediately try to
reconnect with the cluster. At this point, the web load balancing system
directs the new connections to another machine in the cluster, which will
continue to serve the users in lieu of the machine that has broken down.

A high performance server

Lightstreamer Server is a real-time system implemented in Java, which
has been subjected to years of continuous optimization, refactoring and
fine-tuning. In order to guarantee the maximum level of performance,
Lightstreamer Server has been developed as a stand-alone process which
does not rely on an underlying web server or application server. In this way
it is possible to have direct control over the TCP/IP layer of the system, as
well as being able to implement mechanisms to control concurrence that
are perfectly consistent with the specific needs of such a particular server.
Starting from version 2.1, Lightstreamer Server is based on a staged
event-driven architecture, that allows impressive performance and the
ability to sustain very high loads.
The implementation leverages several advanced mechanisms, such as:
§ Stage and queues to manage events.

4 It is possible to see "paradoxical" systems of online trading where the user opens four
pop-up windows with a 5-level book in push on five different stock market securities. But
when the user tries to input a purchase/sale order they can't, because all of the browser's
pool connections are tied up to provide push data...

 21

§ Multiple read/write locks for concurrence management.
§ Thread pooling and priority management of the threads.
§ Load shedding mechanism to maintain constant throughput.
§ Object pooling in memory to minimize garbage collection.
§ Multi-stage data filtering to give the system maximum scalability.
§ Java NIO libraries to decrease the number of used threads.

Lightstreamer Server is compatible with version 1.4 or higher of the Sun
Java virtual machine and with other JVMs compliant with Sun’s standards.
On a monoprocessor machine, the benchmarks have demonstrated that
Lightstreamer Server is able to support thousands of simultaneous
streaming connections.

Lightstreamer administration

Lightstreamer Server has a logging system with dynamically modifiable
trace levels. It is therefore possible to trace each single item of data that
gets sent to each client in the test phases of the Adapters and of the
overall system.
A series of statistics are also exported and updated in real time, covering
various aspects of how the system functions, such as:
§ resources in use (in terms of memory, threads, pool, etc.)
§ open sessions
§ generated events
§ system anomalies
§ bandwidth allocated and utilized
§ per-user statistics (filtered events, bandwidth saturation, etc.).

This information is made available in two ways:
§ A monitoring console in HTML is provided, fed in push by

Lightstreamer itself, which shows in real time constantly updated
statistics for the system. More generally, there is an Adapter within
Lightstreamer which allows clients to subscribe to the stream of
statistical data provided by the server.

§ This information is also exported via the JMX standard, which permits
integration with various kinds of administration consoles. JMX (Java
Management eXtensions) is a widespread specification that provides a
management architecture and API to allow any Java based technology
or accessible resource to be inherently manageable. Lightstreamer 2.3
includes Sun’s JMX Reference Implementation and JMX Remote API.
Due to this integration, the system administrator can now remotely
monitor the quality of service of the Lightstreamer live data channels,
together with the management of many other different aspects of the
system. Any JMX-compliant management console can communicate
with the JMX ‘agent’ included in Lightstreamer Server. A bridge for the
MBean Server included in BEA WebLogic 8.1 is also available.

 22

3. Potential uses of Lightstreamer

Lightstreamer makes available, simply and efficiently, a new and powerful
model for making use of real-time information, which can be sent
through various kinds of channels to clients using different technologies.
Numerous applications can benefit from Lightstreamer and combining this
technology with pre-existing systems is straightforward and fast.

Heterogeneous clients

Lightstreamer is able to feed various types of client in true-push mode:
§ Web browsers (pure HTML/JavaScript pages)
§ Desktop applications (thin or thick application clients written in

Java, Visual Basic, C/C++, C#, Flash, etc.)
§ Excel spreadsheets and DDE clients
§ Midlets (Java J2ME applications for mobile devices)
§ Micro-browsers for smartphones and PDAs.

Web browsers

As explained in the previous paragraph, Lightstreamer is able to feed a
simple HTML page in streaming/push mode without any need to install
Java applets, ActiveX controls or plug-ins on the browser.
In this scenario, the "client" consists of special JavaScript libraries which
handle the network connections and make it possible to update the data on
the web pages in an extremely efficient manner.
The visual quality of the updates is high (lighting and coloring effects of
the cells containing the updated figures are available).
The JavaScript code contained in the Lightstreamer libraries is such as to
ensure compatibility with all main browsers available on the market.

 23

The JavaScript libraries of Lightstreamer permit effects such as:
§ updating of the values displayed in the page
§ dynamic coloring and style changing of values through style sheets
§ on-the-fly creation of new rows in scrolling tables
§ client-side dynamic sorting of tables
§ client-side paging
§ plotting of graphic charts
§ opening of pop-up windows at the server's discretion
§ automatic management of meta-push events
§ callbacks for custom management of events.

Desktop applications

Lightstreamer is also the ideal solution to feed client desktop
applications in streaming/push mode, in other words the classic window-
based applications that can be written in various languages (Java, Visual
Basic, C/C++, C#, etc.) and which require an installation on users' PCs, or
applets and ActiveX controls that don’t require installation. Lightstreamer's
powerful bandwidth & frequency management, adaptive streaming and
multiplexing mechanisms are indispensable for any kind of application that
needs to receive a flow of asynchronous data.

An excellent example of how Lightstreamer Server can be used to feed a
sophisticated application clients is the T3 system introduced by
IntesaTrade5. T3 is an online trading desktop written in Java that receives
real-time market, order and portfolio data from Lightstreamer Server.

Of course, it is also possible to write Lightstreamer application clients in the
form of Java applets or Flash animations to be slotted into web pages in

5 www.intesatrade.it (a company that is part of the Italian group Banca Intesa).

http://www.intesatrade.it

 24

all cases where, for whatever reason, it is decided not to build an entirely
HTML front-end.

Microsoft Excel

Lightstreamer also makes it possible to push feed an Excel spreadsheet
created by the user. A DDE (Dynamic Data Exchange) gateway receives
the data in streaming mode from Lightstreamer Server and makes them
available to the Excel application (or to other DDE clients). In this way, the
figures contained in certain cells of the spreadsheet change dynamically in
real time, in exactly the same way as for other kinds of Lightstreamer
clients.

Java Midlets

The J2ME (Java 2 Micro Edition) technology has for some time been
available on all of the main models of mobile phone, offering the chance to
distribute midlets written in Java for
execution directly on mobiles. The Java
midlet market has turned out to be
extremely interesting and full of initiatives.
Setting up Lightstreamer clients in the form
of midlets is immediate. This makes it
possible to have a mobile application that
presents updates in streaming/push, taking
advantage of Lightstreamer's powerful
bandwidth control mechanisms, which are
seen to be even more vital in a mobile
environment.

 25

Opera browsers for smartphones & PDAs

Opera Software6 provides a version of its famous web browser specifically
downsized for mobile devices (smartphones and PDAs). By means of its
SSR (Small Screen Rendering) technology, the Opera browser is able to
visualize normal HTML pages on the small displays of last-generation
mobile phones.
In its continuous evolution to keep up with the diffusion of any new web
access channel, Lightstreamer also supports pure streaming/push in HTML
on Opera Mobile browsers. This is an important innovation, as it extends
the Lightstreamer model to portable devices as well: i.e. the ability to
visualize data in real time with the same ease and immediacy as visiting a
normal web page. There is no need to install any extra software on the
mobile phone to use the push service (as Opera is pre-installed by the
principal mobile phone manufacturers).

Heterogeneous channels

The various combinations of devices and software that receive push data
can connect to Lightstreamer Server through heterogeneous channels.
The only prerequisite is that there should be a TCP/IP network.
Lightstreamer is therefore suitable for serving various kinds of channels:

§ Intranet: Lightstreamer can be used to distribute live data within a

corporate LAN or private geographical network (e.g. providing real-
time financial information to the branches of a bank).

§ Internet: Lightstreamer is optimized for the distribution of real-time
data on standard Internet connections, which can take place through
any mode of access (analog modem, ADSL modem, optical fiber,
dedicated line, etc.).

§ Mobile Internet: Lightstreamer's light weight, bandwidth control and
automatic adaptation to dynamic variations in the behavior of the
network make it indispensable for streaming/push on wireless Internet
connections (based on GSM, GPRS, UMTS, WI-FI, etc.).

Types of applications

The Lightstreamer technology can be used in many applications. It is the
right solution in all those cases where there is a need to send users

6 www.opera.com

http://www.opera.com

 26

updated information in real time through a web browser, in the simplest
and most efficient way possible.
The following are some examples of application domains that are likely
candidates for drawing the maximum benefits from integration with
Lightstreamer.

Financial information
The primary targets for these kinds of applications are banks, security
houses, information providers and portals that want to provide users
with real-time financial information or online trading services. The client
can be application-based or web-based. The types of information that are
suitable for being provided in push include:
§ Quotes provided in real time for shares, covered warrants, derivatives,

fx, etc.
§ Multi-level book for financial instruments.
§ News headlines published by press agencies.
§ Indices and exchange rates valued in real time.
§ Dynamic changes in the composition of share lists (e.g. top/bottom

performers of the day).
§ Order monitor with real-time updates on the state of orders placed

(submitted, executed, cancelled, etc.).
§ User portfolio with automatic opening, closure and update of

positions.

News
With Lightstreamer it is possible to create web pages with one or more lists
of news headlines updated in push. The user can see a news item on a
dynamic basis as soon as it is published by the press agency, without
having to refresh the page (manually or automatically, as happens with
most sites).
Lightstreamer therefore eliminates any delay between the generation of a
headline (especially of the “breaking news” variety) and its visualization
on a web page that is already open. It is like having a direct link with the
press agencies through a normal browser and an Internet connection.
It is possible to connect Lightstreamer to any kind of feed, simply by writing
specific adapters. For example, Lightstreamer can be integrated with the
Internet open feeds based on RSS (Really Simple Syndication) and Atom
standards.

Monitoring consoles
There are numerous hardware and software platforms on the market with
webpage-based administration consoles. Generally speaking, these are
system / network / application / security / performance management
systems that could be improved through Lightstreamer.
For example, integrating Lightstreamer into an application server
equipped with a web-based monitoring system makes it possible to keep
critical system information (such as the number of connections, amount of
memory available, size of the pool of resources, etc.) under control without
having to refresh the page and without having to introduce applets.
Another example is the introduction of Lightstreamer into the web console
of a firewall, which makes it possible to control all of the vital security

 27

parameters in real time simply by loading a web page onto any kind of
browser.
Lightstreamer can be integrated with any type of system that requires
remote monitoring (including, for example, industrial machines). Push
updates of information are also possible on mobile devices, for those
cases where there is an additional requirement to monitor the system while
the user is on the move.

Online betting
Online betting portals are highly effective if real-time odds can be
displayed. With Lightstreamer any kind of betting (sports, financial, politics,
etc.) can be enlivened with real-time streaming data.

Online games, gambling
Portals that run online games can also benefit from Lightstreamer's push
engine. Bingo, roulette and other games can be offered online without
having to download any software, while maintaining full and genuine
interactivity between the players that are online.

Online auctions
Online auctions have had considerable success. With Lightstreamer it is
possible to organize auctions that only last a few minutes, just like
traditional auctions, thanks to the real interactivity that participants would
have. Each bid made by a participant gets communicated instantly to all of
the others through a simple HTML page. Lightstreamer can be applied
both to "English" auctions, where the price goes up, and to "Dutch"
auctions, where the price goes down (like those organized by certain
government entities).

Sports portals
Lightstreamer makes it possible to update sporting results live on any
kind of browser. For example, as regards football, on any one day of the
league championship it is possible to visualize an HTML page with a table
that shows all of the goals that have been scored as well as other
statistical data of the games being played. Any time the data has to be
updated, the information is sent automatically to all of the browsers that are
connected. As always, the Lightstreamer pages are live without having to
download any external element, while they can be used by PCs as well as
by smartphones.
Of course, there are many other sports that lend themselves to
applications of this kind, because there is a continuous flow of information
that is generated in real time during the match. Another example is
Formula 1. With Lightstreamer it is possible to send telemetry data to
users who are connected to a normal website.

Chat Systems, Instant Messengers, Online
Communities, Social Networks
Current chat systems generally require a Java applet, an ActiveX control
or a Flash component to be loaded onto the user's browser. This tends to
be an obstacle that gets in the way of wider diffusion. Indeed, problems

 28

often occur in connection with the required Java virtual machine or with the
digital signature and certification of the downloaded code. With
Lightstreamer it is possible to create a complete and functionally rich web
chat system based entirely on standard HTML pages. When the user
accesses the chat section, the application gets automatically launched in
the same way that any other page on the site gets visualized, without any
need for special action (such as clicking on pop-up windows which need
permission to download or a security alert).
The same considerations apply to instant messaging systems.
Lightstreamer makes it possible to connect immediately to a network that
manages online messages through an HTML page, which can be loaded
either onto a PC browser or onto a mobile device browser, without having
to install any kind of software.
Lastly, just think of the numerous sites that offer the chance to participate
in online communities and social networks. Having accessed the site by
inputting a nickname and password, users can see which other users of
that community are online (presence), review their profile, interact
symbolically or send messages. An online community is all the more
powerful the higher the level of interactivity that is offered. To find out
if new online users have joined the site or if other users have interacted
with us, the page usually has to be refreshed (automatically or manually).
But with Lightstreamer it is possible to send such information in real time
and without any delays to all connected users.

Website access statistics
Many systems and services for website access statistics offer web pages
with real-time reporting of the number of visits made to a website. All
of these statistics (number of visitors, most requested pages, top referring
sites, list of clients, top paths through site, etc.) are currently offered in pull
mode. With Lightstreamer they would be updated dynamically on the
HTML page, without having to reload periodically.

Web-Mail systems
Many people use e-mail clients based on HTML pages, instead of an
application client installed on their PC. Such Web Mail systems
periodically need to reload the page in order to visualize any new e-mails
that have arrived. With Lightstreamer it is possible to load the page once
onto the browser and keep the window open for the entire day. Each new
e-mail then gets visualized dynamically in push as soon as it arrives.

Transport websites
Another area where dynamic and automatic updates are fundamental is
that of transport timetables. All companies and organizations that operate
in the transport field (airports, railway stations, seaports, etc.) publish
their timetables on the web. With Lightstreamer, timetables that are
visualized in HTML can be updated in real time, indicating late arrivals and
any changes in the timetable. As a result it is possible to make a web page
very similar to the classic arrivals and departures board found at airports
and railway stations.
Lightstreamer can also be used to update road and motorway traffic
information, alerting users of any emergencies.

 29

Public utility services
There are numerous government entities, sectors of the public
administration and non-profit organizations that use Internet to publish
information that gets constantly updated. For example, certain emergency
services publish real-time statistics on their current operations (position of
ambulances, types of emergencies being dealt with, etc.). Lightstreamer
can considerably improve the communication of such information, thereby
creating benefits in the healthcare sector (local health authorities,
hospitals, ambulances, first-aid services, clinics, research centers,
etc.).
In addition, just think of all those cases where the rapid evolution of natural
phenomena requires real-time communication of news bulletins and other
information by the Civil Protection Authority. The same applies to real-
time communications by the Fire Brigade, Forestry Guards, Police,
Army, Navy, etc.

Availability of materials – ticket offices – tourism
With Lightstreamer it is possible to show in real time the effective
availability of any kind of material, resource or object.
For example, in an industrial environment it would be possible to check
inventory levels through a browser.
Alternatively, in the entertainment sector it would be possible to consult
the availability of tickets for the cinema, theater, concerts or sports
events (“online ticketing”).
And in the tourist industry it would be possible to consult in real time the
availability of hotel rooms, air tickets, train tickets, etc.

Opinion polls
Live web as permitted by Lightstreamer is an excellent way to publish the
results of opinion polls, whether online polls, or polls carried out through
more traditional channels (telephone calls, interviews, etc). For example, in
an election environment, it would be possible to communicate all updates
of exit polls and ballot counts in real time via browser.

Other applications
There is an almost infinite number of applications for this push technology
based on web pages. Suffice to think of sales results, real-time reporting
for business intelligence systems, weather reports, e-learning and
remote training, probe output, online tracking, etc.

User "permanence" on a website

One thing that is thoroughly innovative is the ability to make a user's
permanence on a website real. With normal HTML pages that are not
connected to Lightstreamer the user is "present" on the site only when they
load a new page. Once this phase is over, all points of contact between the
browser and the remote site disappear, until such time that another page is
loaded or the same page is refreshed. In other words, under the usual

 30

model of web surfing the concept of “physical presence” on a site does
not exist, only “logical presence” (i.e. a user is deemed to be present on a
site for a set period of time calculated from the moment that they load the
last page).
Lightstreamer makes it possible to change this surfing paradigm quite
radically. The user loads the home page of a website onto their browser.
This page (as always without any applets, plug-ins or elements other than
HTML/JavaScript) activates a permanent connection with Lightstreamer in
a frame. The user is therefore free to surf anywhere they want in the site
without the connection with Lightstreamer ever being interrupted. This
means having a physical channel permanently available for the flow of
information that is totally independent from the page of the site that the
user is reading at the time. This makes it possible for example to show
alerts on the browser at any moment in time, at the server's discretion.
This means that the user is reachable for the entire period of their
permanence on the website.
Consider the case of the administrator of a system (of any kind) that
connects with a web console that reports summary data on the state of the
system. If alarms have to be sent out when certain conditions exist,
without Lightstreamer recourse would have to be had to e-mail, SMS or
similar methods of communication. With Lightstreamer, on the other hand,
at the very moment that the condition exists for an alarm to be sent out, it
is possible to make a pop-up window appear on the user's browser,
without having to wait for a page to be reloaded and without having to
download applets.
It is possible to imagine numerous situations in which this technology could
be used for marketing purposes as well.

 31

4. What Lightstreamer is offering

Lightstreamer is a modular solution that can satisfy the needs of large,
medium and small businesses. Three editions are available: Entry,
Standard and Enterprise. The product suite encompasses the Server
Engines, the Client Engines and several add-ons components conceived to
simplify both back-end and front-end integration:
§ Lightstreamer Server: the push server engine, around which a

personalized streaming/push solution can be built.
§ SDK for Data Adapter and Metadata Adapter Development: the

resources (libraries, documentation, example) needed to create
customized Data Adapters and Metadata Adapters to integrate
Lightstreamer Server with the data feeds.

§ SDK for Web Client Development: existing Web front-ends can
become "Lightstreamer-enabled" by integrating the Lightstreamer Web
Client JavaScript libraries (provided as part of this SDK) with the
existing pages.

§ SDK for Java J2SE Client Development: in the case where the client
is not a Web browser but a Java application, a Java Client Library is
provided as part of this SDK. This library completely hides the network
protocol of Lightstreamer and offers a higher level of abstraction to the
developers that need to incorporate streaming data in their Java
applications.

§ Lightstreamer DDE Gateway: a proxy module that implements a DDE
Server that broadcast the real-time events received by Lightstreamer
Server. The data can be delivered to any DDE client, such as Microsoft
Excel.

§ Lightstreamer Remote Adapter: a module that allows Lightstreamer
Adapters to be run outside Lightstreamer Server process. Through the
Remote Adapter, custom adapters can reside on remote machines
(e.g. behind the DMZ).

§ Lightstreamer COM Adapter: an Adapter that expses Lightstreamer
Adapter interfaces as COM interfaces.

How to integrate Lightstreamer into an IT system

Integrating Lightstreamer into a new or existing system is generally quite
straightforward, inexpensive and low risk. After you have bought
Lightstreamer Server (the essential module), the steps to be taken are the
following:
§ Integration with the data feeds: this entails developing one or more

Data and Metadata Adapters to hook up Lightstreamer Server to the
specific data feeds in the case in point. The Adapters have to be
developed using a Java API that is provided along with Lightstreamer
Server. The code used in the Adapters is then free to employ any kind
of middleware for integration with the data feeds (JMS, JDBC,
CORBA, RendezVous, sockets, etc.) or to call on native codes or
libraries (through JNI).

 32

§ Integration with the front-end: in the event that the user decides to
go the route of an HTML front-end for Lightstreamer, the process of
integration envisages the use of JavaScript libraries that are provided
along with Lightstreamer Server, through which it is possible to make
the web pages “Lightstreamer enabled”. On the other hand, if the user
wants to create an application client, integration merely consists of
adjusting the client to the network protocol of Lightstreamer (this can
be done using a Java client library that is supplied along with
Lightstreamer or directly implementing the simple network protocol of
Lightstreamer).

 33

Contacts

web site:
www.lightstreamer.com

email:
info@lightstreamer.com

CTO

Alessandro Alinone
alessandro.alinone@lightstreamer.com
Tel: +39 02 66732 1

VP Sales

Simon Walmsley
simon.walmsley@lightstreamer.com
Tel: +39 02 66732 1

http://www.lightstreamer.com
mailto:info@lightstreamer.com
mailto:alessandro.alinone@lightstreamer.com
mailto:simon.walmsley@lightstreamer.com

